Training and Evaluation Code for Neural Volumes

Overview

Neural Volumes

This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of objects & scenes that can be rendered and animated from only calibrated multi-view video.

Neural Volumes

Citing Neural Volumes

If you use Neural Volumes in your research, please cite the paper:

@article{Lombardi:2019,
 author = {Stephen Lombardi and Tomas Simon and Jason Saragih and Gabriel Schwartz and Andreas Lehrmann and Yaser Sheikh},
 title = {Neural Volumes: Learning Dynamic Renderable Volumes from Images},
 journal = {ACM Trans. Graph.},
 issue_date = {July 2019},
 volume = {38},
 number = {4},
 month = jul,
 year = {2019},
 issn = {0730-0301},
 pages = {65:1--65:14},
 articleno = {65},
 numpages = {14},
 url = {http://doi.acm.org/10.1145/3306346.3323020},
 doi = {10.1145/3306346.3323020},
 acmid = {3323020},
 publisher = {ACM},
 address = {New York, NY, USA},
}

File Organization

The root directory contains several subdirectories and files:

data/ --- custom PyTorch Dataset classes for loading included data
eval/ --- utilities for evaluation
experiments/ --- location of input data and training and evaluation output
models/ --- PyTorch modules for Neural Volumes
render.py --- main evaluation script
train.py --- main training script

Requirements

  • Python (3.6+)
    • PyTorch (1.2+)
    • NumPy
    • Pillow
    • Matplotlib
  • ffmpeg (in PATH, needed to render videos)

How to Use

There are two main scripts in the root directory: train.py and render.py. The scripts take a configuration file for the experiment that defines the dataset used and the options for the model (e.g., the type of decoder that is used).

A sample set of input data is provided in the v0.1 release and can be downloaded here and extracted into the root directory of the repository. experiments/dryice1/data contains the input images and camera calibration data, and experiments/dryice1/experiment1 contains an example experiment configuration file (experiments/dryice1/experiment1/config.py).

To train the model:

python train.py experiments/dryice1/experiment1/config.py

To render a video of a trained model:

python render.py experiments/dryice1/experiment1/config.py Render

License

See the LICENSE file for details.

Comments
  • Training with our own data

    Training with our own data

    Hi,
    I have a few questions on how the data should be formatted and the data format of the provided dryice1.

    • The model expects world space coordinate in meters? i.e if my extrinsics are already in meters do I still need the world_scale=1/256. in config.py file?
    • The extrinsics are in world2cam and the rotation convention is like opencv? i.e, y-down,z-forward and x-right, assuming identity for pose.txt file?
    • how long do I need to train for about 200 frames? And in the config.py file it seems you are skipping some frames? This is ok to do for my own sequence as well?
    • in the KRT file, I see that there's 5 parameters above the RT matrix. This is the distortion correction in opencv format? But it is not used yes?
    • I did not visualize your cameras, so I am not sure how they are distributed. Is it gonna be a problem if I use 50 cameras equally distributed in a half-hemisphere and the subject is already at world origin and 3.5 meters from every cameras? My question is do I need to filter the training cameras so that the back side of subject that is not seen by input 3 cameras is excluded?
    • How do I choose the input cameras? I have a visualization of the cameras . Which camera config should I use? Is this more a question of which testing camera poses I intend to have, i.e narrower the testing cameras' range of view, the closer input training cameras can be? Config_0 is more orthogonal and Config_1 sees less of the backside.
    opened by zawlin 32
  • Some questions about coordination transformation

    Some questions about coordination transformation

    Hello, Thanks for releasing your code. I am impressed by your work. Now I hope to run your code with my our dataset. I have two questions.

    Firstly, I see the pose.txt is used in the code to put the objects in the center. If I use my own data, will the file still work?

    Secondly, I see the code set the raypos is among -1 and 1. Is it the matrix in this pose file that narrows the range to -1 to 1? My own dataset' range is different.

    Thirdly, does the code limit the scope of the template? Does it have to be between 0-255?

    Thanks a lot in advance!

    opened by maobenz 3
  • Location of the volume

    Location of the volume

    Hi there,

    I wonder whether the origin of the volume is (0,0,0)?

    I'm testing the method on a public dataset (http://people.csail.mit.edu/drdaniel/mesh_animation), and I know exactly where (0,0,0) is in the images. But the volume seems to float around the scene. This is the first preview for training process: prog_000001

    Each camera is pointing to the opposite side of the scene, so I expect the same for the volume location in images. But for some reason, they are on the same side in the images. Can you help?

    Thank you.

    opened by lochuynh1989 3
  • Any plan to release all data that presented in the paper?

    Any plan to release all data that presented in the paper?

    Hi @stephenlombardi ,

    Thanks for sharing this great work. I was wondering do you have any plan to release all the data that you used in the paper (apart from the dryice)?

    Best, Zirui

    opened by ziruiw-dev 2
  • Block-wise initialization scheme

    Block-wise initialization scheme

    Hi, is there any paper describing the used block-wise weight initialization scheme?

    https://github.com/facebookresearch/neuralvolumes/blob/8c5fad49b2b05b4b2e79917ee87299e7c1676d59/models/utils.py#L73

    opened by denkorzh 2
  • Is there a way to render a 3D file from this?

    Is there a way to render a 3D file from this?

    Hello, I was wondering if there is a way to export an .obj/,fbx file along with corresponding materials from this? If not, do you have any suggestions as to how to go about that if I were to try extend the code to incorporate that functionality?

    opened by arlorostirolla 1
  • How Can I train and render a Person Image

    How Can I train and render a Person Image

    Hi my name is Luan I am trying to render a Person Image but I am not being able to run can you create and for me a folder with the Setting setup to use a person image? Thank you.

    opened by LuanDalOrto 1
  • code for hybrid rendering (section 6.2) doesn't exist?

    code for hybrid rendering (section 6.2) doesn't exist?

    Hello,

    First of all, thank you for releasing the code for your seminal work. I really think neural volumes is one of the works that popularized differentiable rendering and inspired future works such as neural radiance fields.

    My question is whether this codebase includes the code for the hybrid rendering method outlined in section 6.2 of the paper. I'm trying to fit Neural Volumes to multi-view video of a full-body human being, similar to the 5th subfigure in Fig. 1 of the main paper, but after reading it more carefully it seems as though I would need to use hybrid rendering to be able to render the fine details of the human being.

    Could you

    1. confirm the existence of hybrid rendering in this codebase AND
    2. whether or not hybrid rendering was used to render the full-bodied human being in Fig. 1 of the main paper.

    Thank you in advance.

    opened by andrewsonga 1
  • Misaligned views in rendering

    Misaligned views in rendering

    Hi,

    I am working on MIT dataset to test the network. When I specify a camera to render, it looks fine throughout timeline. However, while rendering the rotating video, the cameras are misaligned as shown in attached screenshot. All cameras look like clustered at the center and views are spread around within the range cameras cover. Is it possible to be any error in KRT or configuration?

    Any suggestion is welcome. issue_MIT_5_cams

    opened by CorneliusHsiao 1
Releases(v0.1)
Owner
Meta Research
Meta Research
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022