Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Overview

Semi Hand-Object

Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021). report

Project Page with Videos Teaser

Installation

  • Clone this repository:
    git clone https://github.com/stevenlsw/Semi-Hand-Object.git
  • Install the dependencies by the following command:
    pip install -r requirements.txt

Quick Demo (update soon)

Training and Evaluation on HO3D Dataset

Preparation

  • Download the MANO model files (mano_v1_2.zip) from MANO website. Unzip and put mano/models/MANO_RIGHT.pkl into assets/mano_models.

  • Download the YCB-Objects used in HO3D dataset. Put unzipped folder object_models under assets.

  • The structure should look like this:

Semi-Hand-Object/
  assets/
    mano_models/
      MANO_RIGHT.pkl
    object_models/
      006_mustard_bottle/
        points.xyz
        textured_simple.obj
      ......
  • Download and unzip HO3D dataset to path you like, the unzipped path is referred as $HO3D_root.

Evaluation

The hand & object pose estimation performance on HO3D dataset. We evaluate hand pose results on the official CodaLab challenge. The hand metric below is mean joint/mesh error after procrustes alignment, the object metric is average object vertices error within 10% of object diameter (ADD-0.1D).

In our model, we use transformer architecture to perform hand-object contextual reasoning.

Please download the trained model and save to path you like, the model path is refered as $resume.

trained-model joint↓ mesh↓ cleanser↑ bottle↑ can↑ ave↑
link 0.99 0.95 92.2 80.4 55.7 76.1
  • Testing with trained model

   python traineval.py --evaluate --HO3D_root={path to the dataset} --resume={path to the model} --test_batch=24 --host_folder=exp_results

The testing results will be saved in the $host_folder, which contains the following files:

  • option.txt (saved options)
  • object_result.txt (object pose evaluation performance)
  • pred.json (zip -j pred.zip pred.json and submit to the offical challenge for hand evaluation)

Training

Please download the preprocessed files to train HO3D dataset. The downloaded files contains training list and labels generated from the original dataset to accelerate training. Please put the unzipped folder ho3d-process to current directory.

    python traineval.py --HO3D_root={path to the dataset} --train_batch=24 --host_folder=exp_results

The models will be automatically saved in $host_folder

Citation

@inproceedings{liu2021semi,
  title={Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time},
  author={Liu, Shaowei and Jiang, Hanwen and Xu, Jiarui and Liu, Sifei and Wang, Xiaolong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}

TODO

  • Google colab demo

Acknowledgments

We thank:

PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022