Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Overview

Semi Hand-Object

Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021). report

Project Page with Videos Teaser

Installation

  • Clone this repository:
    git clone https://github.com/stevenlsw/Semi-Hand-Object.git
  • Install the dependencies by the following command:
    pip install -r requirements.txt

Quick Demo (update soon)

Training and Evaluation on HO3D Dataset

Preparation

  • Download the MANO model files (mano_v1_2.zip) from MANO website. Unzip and put mano/models/MANO_RIGHT.pkl into assets/mano_models.

  • Download the YCB-Objects used in HO3D dataset. Put unzipped folder object_models under assets.

  • The structure should look like this:

Semi-Hand-Object/
  assets/
    mano_models/
      MANO_RIGHT.pkl
    object_models/
      006_mustard_bottle/
        points.xyz
        textured_simple.obj
      ......
  • Download and unzip HO3D dataset to path you like, the unzipped path is referred as $HO3D_root.

Evaluation

The hand & object pose estimation performance on HO3D dataset. We evaluate hand pose results on the official CodaLab challenge. The hand metric below is mean joint/mesh error after procrustes alignment, the object metric is average object vertices error within 10% of object diameter (ADD-0.1D).

In our model, we use transformer architecture to perform hand-object contextual reasoning.

Please download the trained model and save to path you like, the model path is refered as $resume.

trained-model joint↓ mesh↓ cleanser↑ bottle↑ can↑ ave↑
link 0.99 0.95 92.2 80.4 55.7 76.1
  • Testing with trained model

   python traineval.py --evaluate --HO3D_root={path to the dataset} --resume={path to the model} --test_batch=24 --host_folder=exp_results

The testing results will be saved in the $host_folder, which contains the following files:

  • option.txt (saved options)
  • object_result.txt (object pose evaluation performance)
  • pred.json (zip -j pred.zip pred.json and submit to the offical challenge for hand evaluation)

Training

Please download the preprocessed files to train HO3D dataset. The downloaded files contains training list and labels generated from the original dataset to accelerate training. Please put the unzipped folder ho3d-process to current directory.

    python traineval.py --HO3D_root={path to the dataset} --train_batch=24 --host_folder=exp_results

The models will be automatically saved in $host_folder

Citation

@inproceedings{liu2021semi,
  title={Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time},
  author={Liu, Shaowei and Jiang, Hanwen and Xu, Jiarui and Liu, Sifei and Wang, Xiaolong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}

TODO

  • Google colab demo

Acknowledgments

We thank:

[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Saeed Lotfi 28 Dec 12, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022