Run containerized, rootless applications with podman

Overview

Why?

  • restrict scope of file system access
  • run any application without root privileges
  • creates usable "Desktop applications" to integrate into your normal workflow
  • cut network access for applications that work with confidential stuff to prevent accidental leakage
  • set MEM and CPU boundaries for your applications
  • easy rollback with version pinning
  • works on wayland
  • gameplayerspecial

Installation:

Tested and verified:

  • Fedora 35
  • Ubuntu 21.10
  • Debian 11.3

Fedora 35

sudo dnf install python3-pip
pip install --user pyyaml
pip install --user jinja2
git clone https://github.com/mody5bundle/capps && cd capps/
checkmodule -M -m -o capps.mod capps.te
semodule_package -o capps.pp -m capps.mod
sudo semodule -i capps.pp
./capps.py -a firefox -d

Ubuntu 21.10

sudo apt install git python3 python3-pip podman
pip3 install jinja2
git clone https://github.com/mody5bundle/capps && cd capps/
./capps.py -a sandbox -d

Debian 11.3

sudo apt install git python3 python3-pip podman
pip3 install jinja2 pyyaml
git clone https://github.com/mody5bundle/capps && cd capps/
./capps.py -a spotify -d -s

Usage

capps.py [-h] [-a app1 app2 ... [app1 app2 ... ...]] [-c /path/to/config.yaml] [-b] [-r] [-i] [-v] [-s] [-d] [-l]

Start podman container apps.

options:
  -h, --help            show this help message and exit
  -a app1 app2 ... [app1 app2 ... ...], --application-list app1 app2 ... [app1 app2 ... ...]
                        List of applications to run as defined in config file
  -c /path/to/config.yaml, --config /path/to/config.yaml
                        Path to config file (defaults to config.yaml)
  -b, --build           (re)build list of provided apps
  -r, --run             run containers of all provided apps (default)
  -i, --install         install as desktop application
  -v, --verbose         enable verbose log output
  -s, --stats           enable stats output
  -d, --debug           enable debug log output
  -l, --list            print available container

Example container that gets Created

podman run --rm -d --hostname firefox \
--name firefox-$RANDOM \
--cap-drop=ALL \
--read-only=true \
--read-only-tmpfs=false \
--systemd=false \
--userns=keep-id \
--security-opt=no-new-privileges \
--memory=2048mb \
--cap-add cap_sys_chroot \
--volume $HOME/Downloads/:/home/firefox/Downloads:rw \
--volume /run/user/$UID/pulse/native:/run/user/$UID/pulse/native:ro \
--volume $XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY:ro \
localhost/firefox

Example config file for firefox

default_permissions: &default_permissions
  cap-drop: ALL
  read-only: true
  read-only-tmpfs: true
  systemd: false
  userns: keep-id
  security-opt: "no-new-privileges"
volumes:
  - &sound "/run/user/$UID/pulse/native:/run/user/$UID/pulse/native:ro"
  - &wayland "$XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY:ro"
  - &x11 /tmp/.X11-unix:/tmp/.X11-unix:ro
container:
  firefox:
    versioncmd: "firefox --version | awk \"'\"{print \\$3}\"'\""
    repo: "localhost"
    file: "firefox.dockerfile"
    path: "./container/firefox/"
    icon: "firefox.png"
    permissions:
      memory: 2048mb
      <<: *default_permissions
      read-only-tmpfs: false
      cap-add:
        - "cap_sys_chroot"
      volume:
        - "$HOME/Downloads/:/home/firefox/Downloads:rw"
        - *sound
        - *wayland

list images

./capps.py -l
Available Containers in config:
firefox: 	Mem: 2048mb, 	Capabilities:  ['cap_sys_chroot'], 	cap-drop: ALL
Available images on host for firefox:
['localhost/firefox:latest', 'localhost/firefox:98.0']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1178 MB	 	3391 Minutes old.
['localhost/firefox:97.0.1']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1182 MB	 	26452 Minutes old.
['localhost/firefox:96.0']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1156 MB	 	96024 Minutes old.

get stats on started container

./capps.py -a firefox -s
NAME			MEM			  CPU	 READ/WRITE   PIDS
firefox-18685:	 232.1MB / 2.147GB / 10.81% 	 3.17% 	 -- / -- 57
firefox-18685:	 497.1MB / 2.147GB / 23.15% 	 2.24% 	 0B / 2.049MB 226

Selinux:

cat capps.te
checkmodule -M -m -o capps.mod capps.te
semodule_package -o capps.pp -m capps.mod
semodule -i capps.pp
rm -rf capps.{pp,mod}
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022