Run containerized, rootless applications with podman

Overview

Why?

  • restrict scope of file system access
  • run any application without root privileges
  • creates usable "Desktop applications" to integrate into your normal workflow
  • cut network access for applications that work with confidential stuff to prevent accidental leakage
  • set MEM and CPU boundaries for your applications
  • easy rollback with version pinning
  • works on wayland
  • gameplayerspecial

Installation:

Tested and verified:

  • Fedora 35
  • Ubuntu 21.10
  • Debian 11.3

Fedora 35

sudo dnf install python3-pip
pip install --user pyyaml
pip install --user jinja2
git clone https://github.com/mody5bundle/capps && cd capps/
checkmodule -M -m -o capps.mod capps.te
semodule_package -o capps.pp -m capps.mod
sudo semodule -i capps.pp
./capps.py -a firefox -d

Ubuntu 21.10

sudo apt install git python3 python3-pip podman
pip3 install jinja2
git clone https://github.com/mody5bundle/capps && cd capps/
./capps.py -a sandbox -d

Debian 11.3

sudo apt install git python3 python3-pip podman
pip3 install jinja2 pyyaml
git clone https://github.com/mody5bundle/capps && cd capps/
./capps.py -a spotify -d -s

Usage

capps.py [-h] [-a app1 app2 ... [app1 app2 ... ...]] [-c /path/to/config.yaml] [-b] [-r] [-i] [-v] [-s] [-d] [-l]

Start podman container apps.

options:
  -h, --help            show this help message and exit
  -a app1 app2 ... [app1 app2 ... ...], --application-list app1 app2 ... [app1 app2 ... ...]
                        List of applications to run as defined in config file
  -c /path/to/config.yaml, --config /path/to/config.yaml
                        Path to config file (defaults to config.yaml)
  -b, --build           (re)build list of provided apps
  -r, --run             run containers of all provided apps (default)
  -i, --install         install as desktop application
  -v, --verbose         enable verbose log output
  -s, --stats           enable stats output
  -d, --debug           enable debug log output
  -l, --list            print available container

Example container that gets Created

podman run --rm -d --hostname firefox \
--name firefox-$RANDOM \
--cap-drop=ALL \
--read-only=true \
--read-only-tmpfs=false \
--systemd=false \
--userns=keep-id \
--security-opt=no-new-privileges \
--memory=2048mb \
--cap-add cap_sys_chroot \
--volume $HOME/Downloads/:/home/firefox/Downloads:rw \
--volume /run/user/$UID/pulse/native:/run/user/$UID/pulse/native:ro \
--volume $XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY:ro \
localhost/firefox

Example config file for firefox

default_permissions: &default_permissions
  cap-drop: ALL
  read-only: true
  read-only-tmpfs: true
  systemd: false
  userns: keep-id
  security-opt: "no-new-privileges"
volumes:
  - &sound "/run/user/$UID/pulse/native:/run/user/$UID/pulse/native:ro"
  - &wayland "$XDG_RUNTIME_DIR/$WAYLAND_DISPLAY:/tmp/$WAYLAND_DISPLAY:ro"
  - &x11 /tmp/.X11-unix:/tmp/.X11-unix:ro
container:
  firefox:
    versioncmd: "firefox --version | awk \"'\"{print \\$3}\"'\""
    repo: "localhost"
    file: "firefox.dockerfile"
    path: "./container/firefox/"
    icon: "firefox.png"
    permissions:
      memory: 2048mb
      <<: *default_permissions
      read-only-tmpfs: false
      cap-add:
        - "cap_sys_chroot"
      volume:
        - "$HOME/Downloads/:/home/firefox/Downloads:rw"
        - *sound
        - *wayland

list images

./capps.py -l
Available Containers in config:
firefox: 	Mem: 2048mb, 	Capabilities:  ['cap_sys_chroot'], 	cap-drop: ALL
Available images on host for firefox:
['localhost/firefox:latest', 'localhost/firefox:98.0']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1178 MB	 	3391 Minutes old.
['localhost/firefox:97.0.1']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1182 MB	 	26452 Minutes old.
['localhost/firefox:96.0']	Entrypoint: ['/bin/sh', '-c', '/usr/bin/firefox --private --private-window']	Size: 1156 MB	 	96024 Minutes old.

get stats on started container

./capps.py -a firefox -s
NAME			MEM			  CPU	 READ/WRITE   PIDS
firefox-18685:	 232.1MB / 2.147GB / 10.81% 	 3.17% 	 -- / -- 57
firefox-18685:	 497.1MB / 2.147GB / 23.15% 	 2.24% 	 0B / 2.049MB 226

Selinux:

cat capps.te
checkmodule -M -m -o capps.mod capps.te
semodule_package -o capps.pp -m capps.mod
semodule -i capps.pp
rm -rf capps.{pp,mod}
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022