Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Overview

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding

TL;DR

1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 

논문 정리 발표에 들어갈 내용

  • 저자가 풀려고 하는 문제는 어떤 것인가?
  • 어떤 식으로 해결하고자 했는가. 어떤 장점이 있는가(시간 여유가 된다면, 이전에는 어떤 방법이 있었고 그 방법들의 단점)
  • 그 방법에 대한 intuition (수학 없이)
  • 방법에 대한 이해(수학적으로)
  • 방법의 성공성을 보여주기 위해 사용한 데이터, 메트릭, 성능비교
  • 부족하다 생각되는 것, 애매한 것, 혹은 좋았던 점 등의 Discussion point

리딩 리스트

Dates Paper(author) Year Presenter File upload Code explained
Class-Based n-gram Models of Natural Language(Peter F Brown, et al.) 1992 소연 설명
Efficient Estimation of Word Representations in Vector Space(Tomas Mikolov, et al) 2013 동진 발표
Distributed Representations of Words and Phrases and their Compositionality(Tomas Mikolov, et al) 2013 나연 설명 skip-gram, CBOW
Distributed Representations of Sentences and Documents(Quoc V. Le and Tomas Mikolov) 2014 기원 설명 Doc2Vec
GloVe: Global Vectors for Word Representation(Jeffrey Pennington, et al.) 2015 수정 설명
Skip-Thought Vectors(Ryan Kiros, et al.) 2015 기범 설명
Enriching Word Vectors with Subword Information(Piotr Bojanowski, et al.) 2017 은기 설명
Universal Sentence Encoder(Daniel Cer et al.) 2018

issue & 추가 스터디 자료

Dates Topic Presenter File upload
04/14 genism을 이용한 word2vec 사용 현지 링크
04/14 negative samping & subsampling 나경 링크
04/14 hierarchical softmax 소연 링크
04/14 negative contrastive estimation(NCE) 수정 링크

스터디 룰

  • 스터디 시간 : 목요일 저녁 9시 30분!
  • 스터디 분량 : 매주 1주씩! (프로덕트 서빙 커리큘럼 기간에 집중할 수 있게 그전에 끝내보아영)
    • 각각 읽고, 질문 최소 1개를 github issue에 올림(+ 거기에 대한 답변을 안다면 답변 달아주기!)
  • 발표자 : 해당 요일에 랜덤 선택. 발표 자료는 자유 양식
    • 논문 발표 : 발표자는 발표 후 정리 내용 해당 레포 폴더파서 업로드. 발표자 외 사람 중 공유하고 싶은 사람은 issues에 남기거나 file upload 에 마찬가지로 링크 추가 가능(자율)
    • 코드뷰 설명: 해당 논문 발표자는 다음주차에 코드뷰 설명(e.g, 어떤 라이브러리로 쉽게 쓸 수 있는지 usage 설명, 알고리즘이 복잡한 경우 코드뷰로 어떻게 구현되었는지 설명 등 본인 기호에 맞게)

참여자

강나경, 김소연, 김현지, 박기범, 임동진, 임수정, 정기원, 한나연 , 김은기

참고 링크

논문을 정리하는 틀과 issues를 통한 discussion이 좋았던 깃헙 레포 참고

리딩 리스트를 참고한 NLP Must Read paper 정리된 깃헙 레포 참고

국내 NLP 리뷰 모임 참고 (season1의 beginners에 중복되는 논문들 있어요!)

Owner
Soyeon Kim
Soyeon Kim
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022