Implementing DropPath/StochasticDepth in PyTorch

Related tags

Deep LearningDropPath
Overview
%load_ext memory_profiler

Implementing Stochastic Depth/Drop Path In PyTorch

DropPath is available on glasses my computer vision library!

Introduction

Today we are going to implement Stochastic Depth also known as Drop Path in PyTorch! Stochastic Depth introduced by Gao Huang et al is technique to "deactivate" some layers during training.

Let's take a look at a normal ResNet Block that uses residual connections (like almost all models now).If you are not familiar with ResNet, I have an article showing how to implement it.

Basically, the block's output is added to its input: output = block(input) + input. This is called a residual connection

alt

Here we see four ResnNet like blocks, one after the other.

alt

Stochastic Depth/Drop Path will deactivate some of the block's weight

alt

The idea is to reduce the number of layers/block used during training, saving time and make the network generalize better.

Practically, this means setting to zero the output of the block before adding.

Implementation

Let's start by importing our best friend, torch.

import torch
from torch import nn
from torch import Tensor

We can define a 4D tensor (batch x channels x height x width), in our case let's just send 4 images with one pixel each :)

x = torch.ones((4, 1, 1, 1))

We need a tensor of shape batch x 1 x 1 x 1 that will be used to set some of the elements in the batch to zero, using a given prob. Bernoulli to the rescue!

keep_prob: float = .5
mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    
mask
tensor([[[[0.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Btw, this is equivelant to

mask: Tensor = (torch.rand(x.shape[0], 1, 1, 1) > keep_prob).float()
mask
tensor([[[[1.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Before we multiply x by the mask we need to divide x by keep_prob to rescale down the inputs activation during training, see cs231n. So

x_scaled : Tensor = x / keep_prob
x_scaled
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

Finally

output: Tensor = x_scaled * mask
output
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

We can put together in a function

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x_scaled: Tensor = x / keep_prob
    return x_scaled * mask

drop_path(x, keep_prob=0.5)
tensor([[[[0.]]],


        [[[0.]]],


        [[[2.]]],


        [[[0.]]]])

We can also do the operation in place

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x.div_(keep_prob)
    x.mul_(mask)
    return x


drop_path(x, keep_prob=0.5)
tensor([[[[2.]]],


        [[[2.]]],


        [[[0.]]],


        [[[0.]]]])

However, we may want to use x somewhere else, and dividing x or mask by keep_prob is the same thing. Let's arrive at the final implementation

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1, 1, 1))
drop_path(x, keep_prob=0.8)
tensor([[[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]]])

drop_path only works for 2d data, we need to automatically calculate the number of dimensions from the input size to make it work for any data time

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask_shape: Tuple[int] = (x.shape[0],) + (1,) * (x.ndim - 1) 
    # remember tuples have the * operator -> (1,) * 3 = (1,1,1)
    mask: Tensor = x.new_empty(mask_shape).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1))
drop_path(x, keep_prob=0.8)
tensor([[0.],
        [0.],
        [0.],
        [0.]])

Let's create a nice DropPath nn.Module

class DropPath(nn.Module):
    def __init__(self, p: float = 0.5, inplace: bool = False):
        super().__init__()
        self.p = p
        self.inplace = inplace

    def forward(self, x: Tensor) -> Tensor:
        if self.training and self.p > 0:
            x = drop_path(x, self.p, self.inplace)
        return x

    def __repr__(self):
        return f"{self.__class__.__name__}(p={self.p})"

    
DropPath()(torch.ones((4, 1)))
tensor([[2.],
        [0.],
        [0.],
        [0.]])

Usage with Residual Connections

We have our DropPath, cool but how do we use it? We need a classic ResNet block, let's implement our good old friend BottleNeckBlock

from torch import nn


class ConvBnAct(nn.Sequential):
    def __init__(self, in_features: int, out_features: int, kernel_size=1):
        super().__init__(
            nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=kernel_size // 2),
            nn.BatchNorm2d(out_features),
            nn.ReLU()
        )
         

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        return x + res
    
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28))).shape
torch.Size([1, 64, 28, 28])

To deactivate the block the operation x + res must be equal to res, so our DropPath has to be applied after the block.

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        self.drop_path = DropPath()
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        x = self.drop_path(x)
        return x + res
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28)))
tensor([[[[1.0009, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          ...,
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0005, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0011, 1.0011,  ..., 1.0011, 1.0011, 1.0247]],

         [[1.0203, 1.0123, 1.0123,  ..., 1.0123, 1.0123, 1.0299],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          ...,
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         ...,

         [[1.0011, 1.0180, 1.0180,  ..., 1.0180, 1.0180, 1.0465],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0130, 1.0170, 1.0170,  ..., 1.0170, 1.0170, 1.0213],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          ...,
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0012, 1.0139, 1.0139,  ..., 1.0139, 1.0139, 1.0065]],

         [[1.0103, 1.0181, 1.0181,  ..., 1.0181, 1.0181, 1.0539],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          ...,
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]]]],
       grad_fn=<AddBackward0>)

Tada 🎉 ! Now, randomly, our .block will be completely skipped!


Owner
Francesco Saverio Zuppichini
Computer Vision Engineer @ 🤗 BSc informatics. MSc AI. Artificial Intelligence /Deep Learning Enthusiast & Full Stack developer
Francesco Saverio Zuppichini
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022