we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Related tags

Deep LearningFARNet
Overview

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection

Overview

Localization of anatomical landmarks is essential for clinical diagnosis, treatment planning, and research. In this paper, we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks. To alleviate the problem of limited training data in the medical domain, our network adopts a CNN pre-trained on natural images as the backbone network and several popular networks have been compared. Our FARNet also includes a multi-scale feature aggregation module for multiscale feature fusion and a feature refinement module for high-resolution heatmap regression. Coarse-to-fine supervisions are applied to the two modules to facilitate the endto-end training. We further propose a novel loss function named Exponential Weighted Center loss for more accurate heatmap regression, which focuses on the losses from the pixels near landmarks and suppresses the ones from far away. Our network has been evaluated on three publicly available anatomical landmark detection datasets, including cephalometric radiographs, hand radiographs, and spine radiographs, and achieves state-of-art performances on all three datasets.

The architecture of the feature aggregation and refinement network (FARNet). FARNet includes a backbone network (in the pink dashed box), a multi-scale feature aggregation (MSFA) module (in the blue dashed box) and a feature refinement (FR) module (in the brown dashed box). We also give the feature level labels {L0, L1, L2, L3, L4, L5} at the left side of the figure, and all feature maps at the same horizontal level have the same spatial resolution.

Data

In this paper, we evaluate our landmark detection network on three public benchmark data sets, a cephalometric X-rays dataset [1], a hand X-rays dataset [2] and a Spinal AnteriorPosterior (AP) X-rays dataset [3].

How to use

Dependencies

This tutorial depends on the following libraries:

  • pytorch = 1.0.1
  • numpy = 1.18.5
  • python >= 3.6
  • xlwt

config.py

You should set the image path in config by yourself

Run main.py

Run main.py to train the model and test its performance

Some results

 Illustration of landmark detection results by our proposed method on three public datasets. The first row is the task of cephalometric landmark detetcion(19 landmarks), the second row is the task of hand radiographs landmark detection(37 landmarks) and the last row is the task of spinal anterior-posterior x-ray landmark detection(68 landmarks). The red points denote our detected landmarks via our framework, while blue points represent the ground-truth landmarks.

Reference

[1] C.-W. Wang, C.-T. Huang, J.-H. Lee, C.-H. Li, S.-W. Chang, M.-J.Siao, T.-M. Lai, B. Ibragimov, T. Vrtovec, O. Ronneberger, et al., “A benchmark for comparison of dental radiography analysis algorithms,” Medical image analysis, vol. 31, pp. 63–76, 2016.
[2] C. Payer, D. ˇStern, H. Bischof, and M. Urschler, “Integrating spatial configuration into heatmap regression based cnns for landmark localization,” Medical Image Analysis, vol. 54, pp. 207–219, 2019.
[3] H. Wu, C. Bailey, P. Rasoulinejad, and S. Li, “Automatic landmark estimation for adolescent idiopathic scoliosis assessment using boostnet,” in International Conference on Medical Image Computing and ComputerAssisted Intervention, 2017.

Owner
aoyueyuan
aoyueyuan
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022