Code for "Causal autoregressive flows" - AISTATS, 2021

Related tags

Deep Learningcarefl
Overview

Code for "Causal Autoregressive Flow"

This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, presented at the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021).

The repository originally contained the code to reproduce results presented in Autoregressive flow-based causal discovery and inference, presented at the 2nd ICML workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2020). Switch to the workshop branch to access this version of the code.

Dependencies

This project was tested with the following versions:

  • python 3.7
  • numpy 1.18.2
  • pytorch 1.4
  • scikit-learn 0.22.2
  • scipy 1.4.1
  • matplotlib 3.2.1
  • seaborn 0.10

This project uses normalizing flows implementation from this repository.

Usage

The main.py script is the main gateway to reproduce the experiments detailed in the mansucript, and is straightforward to use. Type python main.py -h to learn about the options.

Hyperparameters can be changed through the configuration files under configs/. The main.py is setup to read the corresponding config file for each experiment, but this can be overwritten using the -y or --config flag.

The results are saved under the run/ folder. This can be changed using the --run flag.

Running the main.py script will only produce data for a single set of parameters, which are specified in the config file. These parameters include the dataset type, the number of simulations, the algorithm, the number of observations, the architectural parameters for the neural networks (number of layers, dimension of the hidden layer...), etc...

To reproduce the figures in the manuscript, the script should be run multiple time for each different combination of parameters, to generate the data used for the plots. Convience scripts are provided to do this in parallel using SLURM (see below). These make use of certain debugging flags that overwrite certain fields in the config file.

Finally, the flow.scale field in the config files is used to switch from CAREFL to CAREFL-NS by setting it to false.

Examples

Experiments where run using the SLURM system. The slurm_main_cpu.sbatch is used to run jobs on CPU, and slurm_main.sbatch for the GPU.

To run simulations in parallel:

for SIZE in 25 50 75 100 150 250 500; do
    for ALGO in lrhyv reci anm; do
        for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
            sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
        done
    done
done
ALGO=carefl
for SIZE in 25 50 75 100 150 250 500; do
    for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
        sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
    done
done

To run interventions:

for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    for ALGO in gp linear; do
        sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
    done
done
ALGO=carefl
for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
done

To run arrow of time on EEG data:

for ALGO in LRHyv RECI ANM; do
    for IDX in {0..117}; do
        sbatch slurm_main_cpu.sbatch -e -n $IDX -a $ALGO --n-sims 11
    done
done
ALGO=carefl
for IDX in {0..117}; do
    sbatch slurm_main.sbatch -e -n $IDX -a $ALGO --n-sims 11
done

To run interventions on fMRI data (this experiment outputs to standard output):

python main.py -f

To run pairs:

for IDX in {1..108}; do
    sbatch slurm_main_cpu.sbatch -p -n $IDX --n-sims 10
done

Reference

If you find this code helpful/inspiring for your research, we would be grateful if you cite the following:

@inproceedings{khemakhem2021causal,
  title = { Causal Autoregressive Flows },
  author = {Khemakhem, Ilyes and Monti, Ricardo and Leech, Robert and Hyvarinen, Aapo},
  booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages = {3520--3528},
  year = {2021},
  editor = {Banerjee, Arindam and Fukumizu, Kenji},
  volume = {130},
  series = {Proceedings of Machine Learning Research},
  month = {13--15 Apr},
  publisher = {PMLR}
}

License

A full copy of the license can be found here.

MIT License

Copyright (c) 2020 Ilyes Khemakhem and Ricardo Pio Monti

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ricardo Pio Monti
Ricardo Pio Monti
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022