The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

Overview

OverlapTransformer

The code for our paper submitted to RAL/IROS 2022:

OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition. PDF

OverlapTransformer is a novel lightweight neural network exploiting the LiDAR range images to achieve fast execution with less than 4 ms per frame using python, less than 2 ms per frame using C++ in LiDAR similarity estimation. It is a newer version of our previous OverlapNet, which is faster and more accurate in LiDAR-based loop closure detection and place recognition.

Developed by Junyi Ma, Xieyuanli Chen and Jun Zhang.

Haomo Dataset

Fig. 1 An online demo for finding the top1 candidate with OverlapTransformer on sequence 1-1 (database) and 1-3 (query) of Haomo Dataset.

Fig. 2 Haomo Dataset which is collected by HAOMO.AI.

More details of Haomo Dataset can be found in dataset description (link).

Table of Contents

  1. Introduction and Haomo Dataset
  2. Publication
  3. Dependencies
  4. How to use
  5. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper (PDF):

@article{ma2022arxiv, 
	author = {Junyi Ma and Jun Zhang and Jintao Xu and Rui Ai and Weihao Gu and Cyrill Stachniss and Xieyuanli Chen},
	title  = {{OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition}},
	journal = {arXiv preprint},
	eprint = {2203.03397},
	year = {2022}
}

Dependencies

We use pytorch-gpu for neural networks.

An nvidia GPU is needed for faster retrival. OverlapTransformer is also fast enough when using the neural network on CPU.

To use a GPU, first you need to install the nvidia driver and CUDA.

  • CUDA Installation guide: link
    We use CUDA 11.3 in our work. Other versions of CUDA are also supported but you should choose the corresponding torch version in the following Torch dependences.

  • System dependencies:

    sudo apt-get update 
    sudo apt-get install -y python3-pip python3-tk
    sudo -H pip3 install --upgrade pip
  • Torch dependences:
    Following this link, you can download Torch dependences by pip:

    pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

    or by conda:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other Python dependencies (may also work with different versions than mentioned in the requirements file):

    sudo -H pip3 install -r requirements.txt

How to use

We provide a training and test tutorials for KITTI sequences in this repository. The tutorials for Haomo dataset will be released together with Haomo dataset.

We recommend you follow our code and data structures as follows.

Code structure

├── config
│   ├── config_haomo.yml
│   └── config.yml
├── modules
│   ├── loss.py
│   ├── netvlad.py
│   ├── overlap_transformer_haomo.py
│   └── overlap_transformer.py
├── test
│   ├── test_haomo_topn_prepare.py
│   ├── test_haomo_topn.py
│   ├── test_kitti00_PR_prepare.py
│   ├── test_kitti00_PR.py
│   ├── test_results_haomo
│   │   └── predicted_des_L2_dis_bet_traj_forward.npz (to be generated)
│   └── test_results_kitti
│       └── predicted_des_L2_dis.npz (to be generated)
├── tools
│   ├── read_all_sets.py
│   ├── read_samples_haomo.py
│   ├── read_samples.py
│   └── utils
│       ├── gen_depth_data.py
│       ├── split_train_val.py
│       └── utils.py
├── train
│   ├── training_overlap_transformer_haomo.py
│   └── training_overlap_transformer_kitti.py
├── valid
│   └── valid_seq.py
├── visualize
│   ├── des_list.npy
│   └── viz_haomo.py
└── weights
    ├── pretrained_overlap_transformer_haomo.pth.tar
    └── pretrained_overlap_transformer.pth.tar

Dataset structure

In the file config.yaml, the parameters of data_root are described as follows:

  data_root_folder (KITTI sequences root) follows:
  ├── 00
  │   ├── depth_map
  │     ├── 000000.png
  │     ├── 000001.png
  │     ├── 000002.png
  │     ├── ...
  │   └── overlaps
  │     ├── train_set.npz
  ├── 01
  ├── 02
  ├── ...
  └── 10
  
  valid_scan_folder (KITTI sequence 02 velodyne) contains:
  ├── 000000.bin
  ├── 000001.bin
  ...

  gt_valid_folder (KITTI sequence 02 computed overlaps) contains:
  ├── 02
  │   ├── overlap_0.npy
  │   ├── overlap_10.npy
  ...

You need to download or generate the following files and put them in the right positions of the structure above:

  • You can find gt_valid_folder for sequence 02 here.
  • Since the whole KITTI sequences need a large memory, we recommend you generate range images such as 00/depth_map/000000.png by the preprocessing from Overlap_Localization or its C++ version, and we will not provide these images. Please note that in OverlapTransformer, the .png images are used instead of .npy files saved in Overlap_Localization.
  • More directly, you can generate .png range images by the script from OverlapNet updated by us.
  • overlaps folder of each sequence below data_root_folder is provided by the authors of OverlapNet here.

Quick Use

For a quick use, you could download our model pretrained on KITTI, and the following two files also should be downloaded :

Then you should modify demo1_config in the file config.yaml.

Run the demo by:

cd demo
python ./demo_compute_overlap_sim.py

You can see a query scan (000000.bin of KITTI 00) with a reprojected positive sample (000005.bin of KITTI 00) and a reprojected negative sample (000015.bin of KITTI 00), and the corresponding similarity.

Fig. 3 Demo for calculating overlap and similarity with our approach.

Training

In the file config.yaml, training_seqs are set for the KITTI sequences used for training.

You can start the training with

cd train
python ./training_overlap_transformer_kitti.py

You can resume from our pretrained model here for training.

Testing

Once a model has been trained , the performance of the network can be evaluated. Before testing, the parameters shoud be set in config.yaml

  • test_seqs: sequence number for evaluation which is "00" in our work.
  • test_weights: path of the pretrained model.
  • gt_file: path of the ground truth file provided by the author of OverlapNet, which can be downloaded here.

Therefore you can start the testing scripts as follows:

cd test
python test_kitti00_PR_prepare.py
python test_kitti00_PR.py

After you run test_kitti00_PR_prepare.py, a file named predicted_des_L2_dis.npz is generated in test_results_kitti, which is used by python test_kitti00_PR.py

For a quick test of the training and testing procedures, you could use our pretrained model.

Visualization

Visualize evaluation on KITTI 00

Firstly, to visualize evaluation on KITTI 00 with search space, the follwoing three files should be downloaded:

and modify the paths in the file config.yaml. Then

cd visualize
python viz_kitti.py

Fig. 4 Evaluation on KITTI 00 with search space from SuMa++ (a semantic LiDAR SLAM method).

Visualize evaluation on Haomo challenge 1 (after Haomo dataset is released)

We also provide a visualization demo for Haomo dataset after Haomo dataset is released (Fig. 1). Please download the descriptors of database (sequence 1-1 of Haomo dataset) firstly and then:

cd visualize
python viz_haomo.py

C++ implemention

We provide a C++ implemention of OverlapTransformer with libtorch for faster retrival.

  • Please download .pt and put it in the OT_libtorch folder.
  • Before building, make sure that PCL exists in your environment.
  • Here we use LibTorch for CUDA 11.3 (Pre-cxx11 ABI). Please modify the path of Torch_DIR in CMakeLists.txt.
  • For more details of LibTorch installation , please check this website.
    Then you can generate a descriptor of 000000.bin of KITTI 00 by
cd OT_libtorch/ws
mkdir build
cd build/
cmake ..
make -j6
./fast_ot 

You can find our C++ OT can generate a decriptor with less than 2 ms per frame.

License

Copyright 2022, Junyi Ma, Xieyuanli Chen, Jun Zhang, HAOMO.AI Technology Co., Ltd., China.

This project is free software made available under the GPL v3.0 License. For details see the LICENSE file.

Owner
HAOMO.AI
HAOMO.AI Technology Co., Ltd. (HAOMO.AI) is an artificial intelligence technology company dedicated to autonomous driving
HAOMO.AI
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022