The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

Overview

OverlapTransformer

The code for our paper submitted to RAL/IROS 2022:

OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition. PDF

OverlapTransformer is a novel lightweight neural network exploiting the LiDAR range images to achieve fast execution with less than 4 ms per frame using python, less than 2 ms per frame using C++ in LiDAR similarity estimation. It is a newer version of our previous OverlapNet, which is faster and more accurate in LiDAR-based loop closure detection and place recognition.

Developed by Junyi Ma, Xieyuanli Chen and Jun Zhang.

Haomo Dataset

Fig. 1 An online demo for finding the top1 candidate with OverlapTransformer on sequence 1-1 (database) and 1-3 (query) of Haomo Dataset.

Fig. 2 Haomo Dataset which is collected by HAOMO.AI.

More details of Haomo Dataset can be found in dataset description (link).

Table of Contents

  1. Introduction and Haomo Dataset
  2. Publication
  3. Dependencies
  4. How to use
  5. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper (PDF):

@article{ma2022arxiv, 
	author = {Junyi Ma and Jun Zhang and Jintao Xu and Rui Ai and Weihao Gu and Cyrill Stachniss and Xieyuanli Chen},
	title  = {{OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition}},
	journal = {arXiv preprint},
	eprint = {2203.03397},
	year = {2022}
}

Dependencies

We use pytorch-gpu for neural networks.

An nvidia GPU is needed for faster retrival. OverlapTransformer is also fast enough when using the neural network on CPU.

To use a GPU, first you need to install the nvidia driver and CUDA.

  • CUDA Installation guide: link
    We use CUDA 11.3 in our work. Other versions of CUDA are also supported but you should choose the corresponding torch version in the following Torch dependences.

  • System dependencies:

    sudo apt-get update 
    sudo apt-get install -y python3-pip python3-tk
    sudo -H pip3 install --upgrade pip
  • Torch dependences:
    Following this link, you can download Torch dependences by pip:

    pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

    or by conda:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other Python dependencies (may also work with different versions than mentioned in the requirements file):

    sudo -H pip3 install -r requirements.txt

How to use

We provide a training and test tutorials for KITTI sequences in this repository. The tutorials for Haomo dataset will be released together with Haomo dataset.

We recommend you follow our code and data structures as follows.

Code structure

├── config
│   ├── config_haomo.yml
│   └── config.yml
├── modules
│   ├── loss.py
│   ├── netvlad.py
│   ├── overlap_transformer_haomo.py
│   └── overlap_transformer.py
├── test
│   ├── test_haomo_topn_prepare.py
│   ├── test_haomo_topn.py
│   ├── test_kitti00_PR_prepare.py
│   ├── test_kitti00_PR.py
│   ├── test_results_haomo
│   │   └── predicted_des_L2_dis_bet_traj_forward.npz (to be generated)
│   └── test_results_kitti
│       └── predicted_des_L2_dis.npz (to be generated)
├── tools
│   ├── read_all_sets.py
│   ├── read_samples_haomo.py
│   ├── read_samples.py
│   └── utils
│       ├── gen_depth_data.py
│       ├── split_train_val.py
│       └── utils.py
├── train
│   ├── training_overlap_transformer_haomo.py
│   └── training_overlap_transformer_kitti.py
├── valid
│   └── valid_seq.py
├── visualize
│   ├── des_list.npy
│   └── viz_haomo.py
└── weights
    ├── pretrained_overlap_transformer_haomo.pth.tar
    └── pretrained_overlap_transformer.pth.tar

Dataset structure

In the file config.yaml, the parameters of data_root are described as follows:

  data_root_folder (KITTI sequences root) follows:
  ├── 00
  │   ├── depth_map
  │     ├── 000000.png
  │     ├── 000001.png
  │     ├── 000002.png
  │     ├── ...
  │   └── overlaps
  │     ├── train_set.npz
  ├── 01
  ├── 02
  ├── ...
  └── 10
  
  valid_scan_folder (KITTI sequence 02 velodyne) contains:
  ├── 000000.bin
  ├── 000001.bin
  ...

  gt_valid_folder (KITTI sequence 02 computed overlaps) contains:
  ├── 02
  │   ├── overlap_0.npy
  │   ├── overlap_10.npy
  ...

You need to download or generate the following files and put them in the right positions of the structure above:

  • You can find gt_valid_folder for sequence 02 here.
  • Since the whole KITTI sequences need a large memory, we recommend you generate range images such as 00/depth_map/000000.png by the preprocessing from Overlap_Localization or its C++ version, and we will not provide these images. Please note that in OverlapTransformer, the .png images are used instead of .npy files saved in Overlap_Localization.
  • More directly, you can generate .png range images by the script from OverlapNet updated by us.
  • overlaps folder of each sequence below data_root_folder is provided by the authors of OverlapNet here.

Quick Use

For a quick use, you could download our model pretrained on KITTI, and the following two files also should be downloaded :

Then you should modify demo1_config in the file config.yaml.

Run the demo by:

cd demo
python ./demo_compute_overlap_sim.py

You can see a query scan (000000.bin of KITTI 00) with a reprojected positive sample (000005.bin of KITTI 00) and a reprojected negative sample (000015.bin of KITTI 00), and the corresponding similarity.

Fig. 3 Demo for calculating overlap and similarity with our approach.

Training

In the file config.yaml, training_seqs are set for the KITTI sequences used for training.

You can start the training with

cd train
python ./training_overlap_transformer_kitti.py

You can resume from our pretrained model here for training.

Testing

Once a model has been trained , the performance of the network can be evaluated. Before testing, the parameters shoud be set in config.yaml

  • test_seqs: sequence number for evaluation which is "00" in our work.
  • test_weights: path of the pretrained model.
  • gt_file: path of the ground truth file provided by the author of OverlapNet, which can be downloaded here.

Therefore you can start the testing scripts as follows:

cd test
python test_kitti00_PR_prepare.py
python test_kitti00_PR.py

After you run test_kitti00_PR_prepare.py, a file named predicted_des_L2_dis.npz is generated in test_results_kitti, which is used by python test_kitti00_PR.py

For a quick test of the training and testing procedures, you could use our pretrained model.

Visualization

Visualize evaluation on KITTI 00

Firstly, to visualize evaluation on KITTI 00 with search space, the follwoing three files should be downloaded:

and modify the paths in the file config.yaml. Then

cd visualize
python viz_kitti.py

Fig. 4 Evaluation on KITTI 00 with search space from SuMa++ (a semantic LiDAR SLAM method).

Visualize evaluation on Haomo challenge 1 (after Haomo dataset is released)

We also provide a visualization demo for Haomo dataset after Haomo dataset is released (Fig. 1). Please download the descriptors of database (sequence 1-1 of Haomo dataset) firstly and then:

cd visualize
python viz_haomo.py

C++ implemention

We provide a C++ implemention of OverlapTransformer with libtorch for faster retrival.

  • Please download .pt and put it in the OT_libtorch folder.
  • Before building, make sure that PCL exists in your environment.
  • Here we use LibTorch for CUDA 11.3 (Pre-cxx11 ABI). Please modify the path of Torch_DIR in CMakeLists.txt.
  • For more details of LibTorch installation , please check this website.
    Then you can generate a descriptor of 000000.bin of KITTI 00 by
cd OT_libtorch/ws
mkdir build
cd build/
cmake ..
make -j6
./fast_ot 

You can find our C++ OT can generate a decriptor with less than 2 ms per frame.

License

Copyright 2022, Junyi Ma, Xieyuanli Chen, Jun Zhang, HAOMO.AI Technology Co., Ltd., China.

This project is free software made available under the GPL v3.0 License. For details see the LICENSE file.

Owner
HAOMO.AI
HAOMO.AI Technology Co., Ltd. (HAOMO.AI) is an artificial intelligence technology company dedicated to autonomous driving
HAOMO.AI
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022