RSNA Intracranial Hemorrhage Detection with python

Overview

RSNA Intracranial Hemorrhage Detection

This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challenge.

Solution write up: Link.

Solutuoin Overview

image

Dependencies

  • opencv-python==3.4.2
  • scikit-image==0.14.0
  • scikit-learn==0.19.1
  • scipy==1.1.0
  • torch==1.1.0
  • torchvision==0.2.1

CODE

  • 2DNet
  • 3DNet
  • SequenceModel

2D CNN Classifier

Pretrained models

Preprocessing

image

Prepare csv file:

download data.zip: https://drive.google.com/open?id=1buISR_b3HQDU4KeNc_DmvKTYJ1gvj5-3

  1. convert dcm to png
python3 prepare_data.py -dcm_path stage_1_train_images -png_path train_png
python3 prepare_data.py -dcm_path stage_1_test_images -png_path train_png
python3 prepare_data.py -dcm_path stage_2_test_images -png_path test_png
  1. train
python3 train_model.py -backbone DenseNet121_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet121_change_avg_256
python3 train_model.py -backbone DenseNet169_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet169_change_avg_256
python3 train_model.py -backbone se_resnext101_32x4d -img_size 256 -tbs 80 -vbs 40 -save_path se_resnext101_32x4d_256
  1. predict
python3 predict.py -backbone DenseNet121_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet121_change_avg_256
python3 predict.py -backbone DenseNet169_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet169_change_avg_256
python3 predict.py -backbone se_resnext101_32x4d -img_size 256 -tbs 4 -vbs 4 -spth se_resnext101_32x4d_256

After single models training, the oof files will be saved in ./SingleModelOutput(three folders for three pipelines).

After training the sequence model, the final submission will be ./FinalSubmission/final_version/submission_tta.csv

Sequence Models

Sequence Model 1

image

Sequence Model 2

image

Path Setup

Set data path in ./setting.py

download

download [csv.zip]

download [feature samples]

Sequence Model Training

CUDA_VISIBLE_DEVICES=0 python main.py

The final submissions are in the folder ../FinalSubmission/version2/submission_tta.csv

Final Submission

Private Leaderboard:

  • 0.04383

Reference

If you find our work useful in your research or if you use parts of this code please consider citing our paper:

  title={A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans},
  author={Wang, Xiyue and Shen, Tao and Yang, Sen and Lan, Jun and Xu, Yanming and Wang, Minghui and Zhang, Jing and Han, Xiao},
  journal={NeuroImage: Clinical},
  volume={32},
  pages={102785},
  year={2021},
  publisher={Elsevier}
} 

TODO

  • Pre-trained models
  • 2DCNN + SeqModel end-to-end training
  • 3DCNN training
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023