img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

Overview

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

License: CC BY-NC 4.0 PWC PWC

Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in silver), aligning it with even the tiniest faces, without face detection or facial landmark localization. Our estimated 3D face locations are rendered by descending distances from the camera, for coherent visualization.

Table of contents

Paper details

Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," arXiv:2012.07791, Dec., 2020

Abstract

We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, often used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.

Citation

If you use any part of our code or data, please cite our paper.

@article{albiero2020img2pose,
  title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation},
  author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal},
  journal={arXiv preprint arXiv:2012.07791},
  year={2020}
}

Installation

Install dependecies with Python 3.

pip install -r requirements.txt

Install the renderer, which is used to visualize predictions. The renderer implementation is forked from here.

cd Sim3DR
sh build_sim3dr.sh

Training

Prepare WIDER FACE dataset

First, download our annotations as instructed in Annotations.

Download WIDER FACE dataset and extract to datasets/WIDER_Face.

Then, to create the train and validation files (LMDB), run the following scripts.

python3 convert_json_list_to_lmdb.py
--json_list ./annotations/WIDER_train_annotations.txt
--dataset_path ./datasets/WIDER_Face/WIDER_train/images/
--dest ./datasets/lmdb/
-—train

This first script will generate a LMDB dataset, which contains the training images along with annotations. It will also output a pose mean and std deviation files, which will be used for training and testing.

python3 convert_json_list_to_lmdb.py 
--json_list ./annotations/WIDER_val_annotations.txt 
--dataset_path ./datasets/WIDER_Face/WIDER_val/images/ 
--dest ./datasets/lmdb

This second script will create a LMDB containing the validation images along with annotations.

Train

Once the LMDB train/val files are created, to start training simple run the script below.

CUDA_VISIBLE_DEVICES=0 python3 train.py
--pose_mean ./datasets/lmdb/WIDER_train_annotations_pose_mean.npy
--pose_stddev ./datasets/lmdb/WIDER_train_annotations_pose_stddev.npy
--workspace ./workspace/
--train_source ./datasets/lmdb/WIDER_train_annotations.lmdb
--val_source ./datasets/lmdb/WIDER_val_annotations.lmdb
--prefix trial_1
--batch_size 2
--lr_plateau
--early_stop
--random_flip
--random_crop
--max_size 1400

For now, only single GPU training is tested. Distributed training is partially implemented, PRs welcome.

Testing

To evaluate with the pretrained model, download the model from Model Zoo, and extract it to the main folder. It will create a folder called models, which contains the model weights and the pose mean and std dev that was used for training.

If evaluating with own trained model, change the pose mean and standard deviation to the ones trained with.

Visualizing trained model

To visualize a trained model on the WIDER FACE validation set run the notebook visualize_trained_model_predictions.

WIDER FACE dataset evaluation

If you haven't done already, download the WIDER FACE dataset and extract to datasets/WIDER_Face.

python3 evaluation/evaluate_wider.py 
--dataset_path datasets/WIDER_Face/WIDER_val/images/
--dataset_list datasets/WIDER_Face/wider_face_split/wider_face_val_bbx_gt.txt
--pretrained_path models/img2pose_v1.pth
--output_path results/WIDER_FACE/Val/

To check mAP and plot curves, download the eval tools and point to results/WIDER_FACE/Val.

AFLW2000-3D dataset evaluation

Download the AFLW2000-3D dataset and unzip to datasets/AFLW2000.

Run the notebook aflw_2000_3d_evaluation.

BIWI dataset evaluation

Download the BIWI dataset and unzip to datasets/BIWI.

Run the notebook biwi_evaluation.

Testing on your own images

Run the notebook test_own_images.

Output customization

For every face detected, the model outputs by default:

  • Pose: pitch, yaw, roll, horizontal translation, vertical translation, and scale
  • Projected bounding boxes: left, top, right, bottom
  • Face scores: 0 to 1

Since the projected bounding box without expansion ends at the start of the forehead, we provide a way of expanding the forehead invidually, along with default x and y expansion.

To customize the size of the projected bounding boxes, when creating the model change any of the bounding box expansion variables as shown below (a complete example can be seen at visualize_trained_model_predictions).

# how much to expand in width
bbox_x_factor = 1.1
# how much to expand in height
bbox_y_factor = 1.1
# how much to expand in the forehead
expand_forehead = 0.3

img2pose_model = img2poseModel(
    ...,    
    bbox_x_factor=bbox_x_factor,
    bbox_y_factor=bbox_y_factor,
    expand_forehead=expand_forehead,
)

Align faces

To align the detected faces, call the function bellow passing the reference points, the image with the faces to align, and the poses outputted by img2pose. The function will return a list with PIL images containing one aligned face per give pose.

from utils.pose_operations import align_faces

# load reference points
threed_points = np.load("pose_references/reference_3d_5_points_trans.npy")

aligned_faces = align_faces(threed_points, img, poses)

Resources

Model Zoo

Annotations

Data Zoo

License

Check license for license details.

Owner
Vítor Albiero
Vítor Albiero
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022