Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

Related tags

Deep LearningT-Fuzz
Overview

T-Fuzz

T-Fuzz consists of 2 components:

  • Fuzzing tool (TFuzz): a fuzzing tool based on program transformation
  • Crash Analyzer (CrashAnalyzer): a tool that verifies whether crashes found transformed programs are true bugs in the original program or not (coming soon).

OS support

The current version is tested only on Ubuntu-16.04, while trying to run the code, please use our tested OS.

Prerequisite

T-Fuzz system is built on several opensource tools.

Installing radare2

$ git clone https://github.com/radare/radare2.git
$ cd radare2
$ ./sys/install.sh

Installing python libraries

installing some dependent libraries

Note: to use apt-get build-dep, you need to uncomment the deb-src lines in your apt source file (/etc/apt/sources.list) and run apt-get update.

$ sudo apt-get install build-essential gcc-multilib libtool automake autoconf bison debootstrap debian-archive-keyring
$ sudo apt-get build-dep qemu-system
$ sudo apt-get install libacl1-dev

installing pip and setting up virtualenv & wrapper

$ sudo apt-get install python-pip python-virtualenv
$ pip install virtualenvwrapper

Add the following lines to your shell rc file (~/.bashrc or ~/.zshrc).

export WORKON_HOME=$HOME/.virtual_envs
source /usr/local/bin/virtualenvwrapper.sh

Creating a python virtual environment

$ mkvirtualenv tfuzz-env

Installing dependent libraries

This command will install all the dependent python libraries for you.

$ workon tfuzz-env
$ pip install -r req.txt

Fuzzing target programs with T-Fuzz

$ ./TFuzz  --program  
   
     --work_dir 
    
      --target_opts 
     

     
    
   

Where

  • : the path to the target program to fuzz
  • : the directory to save the results
  • : the options to pass to the target program, like AFL, use @@ as placeholder for files to mutate.

Examples

  1. Fuzzing base64 with T-Fuzz
$ ./TFuzz  --program  target_programs/base64  --work_dir workdir_base64 --target_opts "-d @@"
  1. Fuzzing uniq with T-Fuzz
$ ./TFuzz  --program  target_programs/uniq  --work_dir workdir_uniq --target_opts "@@"
  1. Fuzzing md5sum with T-Fuzz
$ ./TFuzz  --program  target_programs/md5sum  --work_dir workdir_md5sum --target_opts "-c @@"
  1. Fuzzing who with T-Fuzz
$ ./TFuzz  --program  target_programs/who  --work_dir workdir_who --target_opts "@@"

Using CrashAnalyzer to verify crashes

T-Fuzz CrashAnalyzer has been put in a docker image, however, it is still not working in all binaries we tested, we are still investigating it the cause.

Here is how:

Run the following command to run our docker image

$ [sudo] docker pull tfuzz/tfuzz-test
$ [sudo] docker run  --security-opt seccomp:unconfined -it tfuzz/tfuzz-test  /usr/bin/zsh 

In the container:

There are 3 directories:

  • release: contains code the built lava binaries
  • results: contains some results we found in lava-m dataset
  • radare2: it is a program used by T-Fuzz.

Currently, T-Fuzz may not work, because the tracer crashes accidentally. And the CrashAnalyzer can not work on all results. But some cases can be recovered.

For example:

To verify bugs in base64, first goto release and checkout ca_base64:

$ cd release
$ git checkout ca_base64

Then we use a transformed program to recover the crash in the original program:

  1. Choose a transformed program and run it on the input found by a fuzzer:
$ cd ~
$./results/ca_base64/554/base64_tfuzz_28/base64_tfuzz_28 -d ./results/ca_base64/554/crashing_inputs_from/results_saved_0_from 
[1]    131 segmentation fault (core dumped)  ./results/ca_base64/554/base64_tfuzz_28/base64_tfuzz_28 -d
  1. Recover an input from this transformed program and crashing input
). Re-hooking. WARNING | 2018-12-04 04:28:23,228 | angr.project | Address is already hooked, during hook(0x90dd000, ). Re-hooking. WARNING | 2018-12-04 04:28:23,229 | angr.simos.linux | Tracer has been heavily tested only for CGC. If you find it buggy for Linux binaries, we are sorry! Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 47))> Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 47))> Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 47))> Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 47))> results saved to /root/base64_result/recover_0 ">
$ ./release/CrashAnalyzer  --tprogram ./results/ca_base64/554/base64_tfuzz_28/base64_tfuzz_28 --target_opts "-d @@" --crash_input ./results/ca_base64/554/crashing_inputs_from/results_saved_0_from --result_dir base64_result --save_to recover
WARNING | 2018-12-04 04:28:22,350 | angr.analyses.disassembly_utils | Your verison of capstone does not support MIPS instruction groups.
Trying /root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from
WARNING | 2018-12-04 04:28:23,228 | angr.project | Address is already hooked, during hook(0x9021cd0, 
        
         ). Re-hooking.
WARNING | 2018-12-04 04:28:23,228 | angr.project | Address is already hooked, during hook(0x90dd000, 
         
          ). Re-hooking.
WARNING | 2018-12-04 04:28:23,229 | angr.simos.linux | Tracer has been heavily tested only for CGC. If you find it buggy for Linux binaries, we are sorry!
Adding 
          
           = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 47))>
Adding 
           
            = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 47))>
Adding 
            
             = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 47))> Adding 
             
              = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 47))> results saved to /root/base64_result/recover_0 
             
            
           
          
         
        

Then /root/base64_result/recover_0 is generated, we can use it to trigger a crash in the original program.

  1. verify the input by running the generated input on the original program
$ ./results/base64 -d base64_result/recover_0 
Successfully triggered bug 554, crashing now!
Successfully triggered bug 554, crashing now!
Successfully triggered bug 554, crashing now!
[1]    177 segmentation fault (core dumped)  ./results/base64 -d base64_result/recover_0
Owner
HexHive
Enforcing memory safety guarantees and type safety guarantees at the compiler and runtime level
HexHive
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023