Python script to download the celebA-HQ dataset from google drive

Overview

download-celebA-HQ

Python script to download and create the celebA-HQ dataset.

WARNING from the author. I believe this script is broken since a few months (I have not try it for a while). I am really sorry about that. If you fix it, please share you solution in a PR so that everyone can benefit from it.

To get the celebA-HQ dataset, you need to a) download the celebA dataset download_celebA.py , b) download some extra files download_celebA_HQ.py, c) do some processing to get the HQ images make_HQ_images.py.

The size of the final dataset is 89G. However, you will need a bit more storage to be able to run the scripts.

Usage

  1. Clone the repository
git clone https://github.com/nperraud/download-celebA-HQ.git
cd download-celebA-HQ
  1. Install necessary packages (Because specific versions are required Conda is recomended)
conda create -n celebaHQ python=3
source activate celebaHQ
  • Install the packages
conda install jpeg=8d tqdm requests pillow==3.1.1 urllib3 numpy cryptography scipy
pip install opencv-python==3.4.0.12 cryptography==2.1.4
  • Install 7zip (On Ubuntu)
sudo apt-get install p7zip-full
  1. Run the scripts
python download_celebA.py ./
python download_celebA_HQ.py ./
python make_HQ_images.py ./

where ./ is the directory where you wish the data to be saved.

  1. Go watch a movie, theses scripts will take a few hours to run depending on your internet connection and your CPU power. The final HQ images will be saved as .npy files in the ./celebA-HQ folder.

Windows

The script may work on windows, though I have not tested this solution personnaly

Step 2 becomes

conda create -n celebaHQ python=3
source activate celebaHQ
  • Install the packages
conda  install -c anaconda jpeg=8d tqdm requests pillow==3.1.1 urllib3 numpy cryptography scipy
  • Install 7zip

The rest should be unchanged.

Docker

If you have Docker installed, skip the previous installation steps and run the following command from the root directory of this project:

docker build -t celeba . && docker run -it -v $(pwd):/data celeba

By default, this will create the dataset in same directory. To put it elsewhere, replace $(pwd) with the absolute path to the desired output directory.

Outliers

It seems that the dataset has a few outliers. A of problematic images is stored in bad_images.txt. Please report if you find other outliers.

Remark

This script is likely to break somewhere, but if it executes until the end, you should obtain the correct dataset.

Sources

This code is inspired by these files

Citing the dataset

You probably want to cite the paper "Progressive Growing of GANs for Improved Quality, Stability, and Variation" that was submitted to ICLR 2018 by Tero Karras (NVIDIA), Timo Aila (NVIDIA), Samuli Laine (NVIDIA), Jaakko Lehtinen (NVIDIA and Aalto University).

NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022