This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

Overview

The Neural Process Family

This repository contains notebook implementations of the following Neural Process variants:

  • Conditional Neural Processes (CNPs)
  • Neural Processes (NPs)
  • Attentive Neural Processes (ANPs)

The code for CNPs can be found in conditional_neural_process.ipynb while the code for both NPs and ANPs is located in attentive_neural_process.ipynb.

The notebooks include an overview of the different building blocks of the models as well as the code to run each model in the browser. Any further details can be found in the CNP paper, the NP paper and the ANP paper.

Quick run

The easiest way to run the code is to run it in the browser on Colab. Here below are the links to each of the notebooks in Colab:

Colaboratory is a free Jupyter notebook environment provided by Google that requires no setup and runs entirely in the cloud. The hosted runtime already includes the following dependencies, tested on the following versions in brackets:

  • Numpy (1.14.6)
  • Tensorflow (1.13.1)
  • Matplotlib (2.2.4)

which are all we need to run the code in this repository.

Alternatively, you can open the .ipynb files using Jupyter notebook. If you do this you will also have to set up a local kernel that includes Tensorflow.

Citing CNPs

If you like our work and end up using neural processes for your reseach give us a shout-out:

  1. Conditional Neural Processes: Garnelo M, Rosenbaum D, Maddison CJ, Ramalho T, Saxton D, Shanahan M, Teh YW, Rezende DJ, Eslami SM. Conditional Neural Processes. In International Conference on Machine Learning 2018.

  2. Neural Processes: Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D.J., Eslami, S.M. and Teh, Y.W. Neural processes. ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models 2018.

  3. Attentive Neural Processes: Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O. and Teh, Y.W. Attentive Neural Processes. In International Conference on Learning Representations 2019.

Contact

Any feedback is much appreciated! Drop us a line at [email protected] (Conditional Neural Process) or [email protected] ((Attentive) Neural Process).

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022