Behavioral "black-box" testing for recommender systems

Overview

RecList

Documentation Status Contributors License Downloads

RecList

Overview

RecList is an open source library providing behavioral, "black-box" testing for recommender systems. Inspired by the pioneering work of Ribeiro et al. 2020 in NLP, we introduce a general plug-and-play procedure to scale up behavioral testing, with an easy-to-extend interface for custom use cases.

RecList ships with some popular datasets and ready-made behavioral tests: check the paper for more details on the relevant literature and the philosophical motivations behind the project.

If you are not familiar with the library, we suggest first taking our small tour to get acquainted with the main abstractions through ready-made models and public datasets.

Quick Links

  • Our paper, with in-depth analysis, detailed use cases and scholarly references.
  • A colab notebook (WIP), showing how to train a cart recommender model from scratch and use the library to test it.
  • Our blog post (forthcoming), with examples and practical tips.

Project updates

Nov. 2021: the library is currently in alpha (i.e. enough working code to finish the paper and tinker with it). We welcome early feedback, but please be advised that the package may change substantially in the upcoming months ("If you're not embarrassed by the first version, you've launched too late").

As the project is in active development, come back often for updates.

Summary

This doc is structured as follows:

Quick Start

If you want to see RecList in action, clone the repository, create and activate a virtual env, and install the required packages from root. If you prefer to experiment in an interactive, no-installation-required fashion, try out our colab notebook.

Sample scripts are divided by use-cases: similar items, complementary items or session-based recommendations. When executing one, a suitable public dataset will be downloaded, and a baseline ML model trained: finally, the script will run a pre-made suite of behavioral tests to show typical results.

git clone https://github.com/jacopotagliabue/reclist
cd reclist
python3 -m venv venv
source venv/bin/activate
pip install -e .
python examples/coveo_complementary_rec.py

Running your model on one of the supported dataset, leveraging the pre-made tests, is as easy as implementing a simple interface, RecModel.

Once you've run successfully the sample script, take the guided tour below to learn more about the abstractions and the out-of-the-box capabilities of RecList.

A Guided Tour

An instance of RecList represents a suite of tests for recommender systems: given a dataset (more appropriately, an instance of RecDataset) and a model (an instance of RecModel), it will run the specified tests on the target dataset, using the supplied model.

For example, the following code instantiates a pre-made suite of tests that contains sensible defaults for a cart recommendation use case:

rec_list = CoveoCartRecList(
    model=model,
    dataset=coveo_dataset
)
# invoke rec_list to run tests
rec_list(verbose=True)

Our library pre-packages standard recSys KPIs and important behavioral tests, divided by use cases, but it is built with extensibility in mind: you can re-use tests in new suites, or you can write new domain-specific suites and tests.

Any suite must inherit the RecList interface, and then declare with Pytonic decorators its tests: in this case, the test re-uses a standard function:

class MyRecList(RecList):

    @rec_test(test_type='stats')
    def basic_stats(self):
        """
        Basic statistics on training, test and prediction data
        """
        from reclist.metrics.standard_metrics import statistics
        return statistics(self._x_train,
            self._y_train,
            self._x_test,
            self._y_test,
            self._y_preds)

Any model can be tested, as long as its predictions are wrapped in a RecModel. This allows for pure "black-box" testings, a SaaS provider can be tested just by wrapping the proper API call in the method:

class MyCartModel(RecModel):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def predict(self, prediction_input: list, *args, **kwargs):
        """
        Implement the abstract method, accepting a list of lists, each list being
        the content of a cart: the predictions returned by the model are the top K
        items suggested to complete the cart.
        """

        return

While many standard KPIs are available in the package, the philosophy behind RecList is that metrics like Hit Rate provide only a partial picture of the expected behavior of recommenders in the wild: two models with very similar accuracy can have very different behavior on, say, the long-tail, or model A can be better than model B overall, but at the expense of providing disastrous performance on a set of inputs that are particularly important in production.

RecList recognizes that outside of academic benchmarks, some mistakes are worse than others, and not all inputs are created equal: when possible, it tries to operationalize through scalable code behavioral insights for debugging and error analysis; it also provides extensible abstractions when domain knowledge and custom logic are needed.

Once you run a suite of tests, results are dumped automatically and versioned in a local folder, structured as follows (name of the suite, name of the model, run timestamp):

.reclist/
  myList/
    myModel/
      1637357392/
      1637357404/

We provide a simple (and very WIP) UI to easily compare runs and models. After you run two times one of the example scripts, you can do:

cd app
python app.py

to start a local web app that lets you explore test results:

https://github.com/jacopotagliabue/reclist/blob/main/images/explorer.png

If you select more than model, the app will automatically build comparison tables:

https://github.com/jacopotagliabue/reclist/blob/main/images/comparison.png

If you start using RecList as part of your standard testings - either for research or production purposes - you can use the JSON report for machine-to-machine communication with downstream system (e.g. you may want to automatically fail the model pipeline if certain behavioral tests are not passed).

Capabilities

RecList provides a dataset and model agnostic framework to scale up behavioral tests. As long as the proper abstractions are implemented, all the out-of-the-box components can be re-used. For example:

  • you can use a public dataset provided by RecList to train your new cart recommender model, and then use the RecTests we provide for that use case;
  • you can use some baseline model on your custom dataset, to establish a baseline for your project;
  • you can use a custom model, on a private dataset and define from scratch a new suite of tests, mixing existing methods and domain-specific tests.

We list below what we currently support out-of-the-box, with particular focus on datasets and tests, as the models we provide are convenient baselines, but they are not meant to be SOTA research models.

Datasets

RecList features convenient wrappers around popular datasets, to help test models over known benchmarks in a standardized way.

Behavioral Tests

Coming soon!

Roadmap

To do:

  • the app is just a stub: improve the report "contract" and extend the app capabilities, possibly including it in the library itself;
  • continue adding default RecTests by use cases, and test them on public datasets;
  • improving our test suites and refactor some abstractions;
  • adding Colab tutorials, extensive documentation and a blog-like write-up to explain the basic usage.

We maintain a small Trello board on the project which we plan on sharing with the community: more details coming soon!

Contributing

We will update this repo with some guidelines for contributions as soon as the codebase becomes more stable. Check back often for updates!

Acknowledgments

The main contributors are:

If you have questions or feedback, please reach out to: jacopo dot tagliabue at tooso dot ai.

License and Citation

All the code is released under an open MIT license. If you found RecList useful, or you are using it to benchmark/debug your model, please cite our pre-print (forhtcoming):

@inproceedings{Chia2021BeyondNB,
  title={Beyond NDCG: behavioral testing of recommender systems with RecList},
  author={Patrick John Chia and Jacopo Tagliabue and Federico Bianchi and Chloe He and Brian Ko},
  year={2021}
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022