The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Overview

Magnetic Graph Convolutional Networks

The Magnetic Eigenmap

A directed 4-cycle

About

The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs.

Requirements

To install requirements:

pip3 install -r requirements.txt

Results

Node classification accuracy in Citation networks (%)

Model CoRA CiteSeer PubMed
GAT 82.60 ± 0.40 70.45 ± 0.25 77.45 ± 0.45
sMGC 82.70 ± 0.00 73.30 ± 0.00 79.90 ± 0.10
MGC 82.50 ± 1.00 71.25 ± 0.95 79.70 ± 0.40

Node classification accuracy in WebKB (%)

Model Cornell Texas Washington Wisconsin
GAT 41.03 ± 0.00 52.63 ± 2.63 63.04 ± 0.00 56.61 ± 1.88
sMGC 73.08 ± 1.28 71.05 ± 0.00 68.48 ± 3.26 80.19 ± 2.83
MGC 80.77 ± 3.85 82.90 ± 1.31 70.66 ± 1.08 87.74 ± 2.83

Reproduce experiment results

sMGC

CoRA:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.03 --t=8.05 --K=38

CiteSeer:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=5.16 --K=40

PubMed:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.01 --t=5.95 --K=25

Cornell:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.95 --t=45.32 --K=12

Texas:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.71 --t=45.08 --K=23

Washington:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.77 --t=45.95 --K=44

Wisconsin:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.93 --t=25.76 --K=34

MGC

CoRA:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.08 --t=5.85 --K=10 --droprate=0.4

CiteSeer:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=25.95 --K=35 --droprate=0.3

PubMed:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.03 --t=15.95 --K=20 --droprate=0.5

Cornell:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.66 --t=38.49 --K=31 --droprate=0.6

Texas:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.75 --t=0.53 --K=4 --droprate=0.5

Washington:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.73 --t=42.36 --K=21 --droprate=0.1

Wisconsin:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.34 --t=0.52 --K=12 --droprate=0.5
Owner
What we know is a drop. What we do not know is an ocean.
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023