The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Overview

Magnetic Graph Convolutional Networks

The Magnetic Eigenmap

A directed 4-cycle

About

The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs.

Requirements

To install requirements:

pip3 install -r requirements.txt

Results

Node classification accuracy in Citation networks (%)

Model CoRA CiteSeer PubMed
GAT 82.60 ± 0.40 70.45 ± 0.25 77.45 ± 0.45
sMGC 82.70 ± 0.00 73.30 ± 0.00 79.90 ± 0.10
MGC 82.50 ± 1.00 71.25 ± 0.95 79.70 ± 0.40

Node classification accuracy in WebKB (%)

Model Cornell Texas Washington Wisconsin
GAT 41.03 ± 0.00 52.63 ± 2.63 63.04 ± 0.00 56.61 ± 1.88
sMGC 73.08 ± 1.28 71.05 ± 0.00 68.48 ± 3.26 80.19 ± 2.83
MGC 80.77 ± 3.85 82.90 ± 1.31 70.66 ± 1.08 87.74 ± 2.83

Reproduce experiment results

sMGC

CoRA:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.03 --t=8.05 --K=38

CiteSeer:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=5.16 --K=40

PubMed:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.01 --t=5.95 --K=25

Cornell:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.95 --t=45.32 --K=12

Texas:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.71 --t=45.08 --K=23

Washington:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.77 --t=45.95 --K=44

Wisconsin:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.93 --t=25.76 --K=34

MGC

CoRA:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.08 --t=5.85 --K=10 --droprate=0.4

CiteSeer:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=25.95 --K=35 --droprate=0.3

PubMed:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.03 --t=15.95 --K=20 --droprate=0.5

Cornell:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.66 --t=38.49 --K=31 --droprate=0.6

Texas:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.75 --t=0.53 --K=4 --droprate=0.5

Washington:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.73 --t=42.36 --K=21 --droprate=0.1

Wisconsin:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.34 --t=0.52 --K=12 --droprate=0.5
Owner
What we know is a drop. What we do not know is an ocean.
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
LIAO Shuiying 6 Dec 01, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023