Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Overview

Fast Training of Neural Lumigraph Representations using Meta Learning

Project Page | Paper | Data

Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzstein, Stanford University.
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Usage

To get started, create a conda environment with all dependencies:

conda env create -f environment.yml
conda activate metanlrpp

Code Structure

The code is organized as follows:

  • experiment_scripts: directory containing scripts to for training and testing MetaNLR++ models.
    • pretrain_features.py: pre-train encoder and decoder networks
    • train_sdf_ibr_meta.py: train meta-learned initialization for encoder, decoder, aggregation fn, and neural SDF
    • test_sdf_ibr_meta.py: specialize meta-learned initialization to a specific scene
    • train_sdf_ibr.py: train NLR++ model from scratch without meta-learned initialization
    • test_sdf_ibr.py: evaluate performance on withheld views
  • configs: directory containing configs to reproduce experiments in the paper
    • nlrpp_nlr.txt: configuration for training NLR++ on the NLR dataset
    • nlrpp_dtu.txt: configuration for training NLR++ on the DTU dataset
    • nlrpp_nlr_meta.txt: configuration for training the MetaNLR++ initialization on the NLR dataset
    • nlrpp_dtu_meta.txt: configuration for training the MetaNLR++ initialization on the DTU dataset
    • nlrpp_nlr_metaspec.txt: configuration for training MetaNLR++ on the NLR dataset using the learned initialization
    • nlrpp_dtu_metaspec.txt: configuration for training MetaNLR++ on the DTU dataset using the learned initialization
  • data_processing: directory containing utility functions for processing data
  • torchmeta: torchmeta library for meta-learning
  • utils: directory containing various utility functions for rendering and visualization
  • loss_functions.py: file containing loss functions for evaluation
  • meta_modules.py: contains meta learning wrappers around standard modules using torchmeta
  • modules.py: contains standard modules for coodinate-based networks
  • modules_sdf.py: extends standard modules for coordinate-based network representations of signed-distance functions.
  • modules_unet.py: contains encoder and decoder modules used for image-space feature processing
  • scheduler.py: utilities for training schedule
  • training.py: training script
  • sdf_rendering.py: functions for rendering SDF
  • sdf_meshing.py: functions for meshing SDF
  • checkpoints: contains checkpoints to some pre-trained models (additional/ablation models by request)
  • assets: contains paths to checkpoints which are used as assets, and pre-computed buffers over multiple runs (if necessary)

Getting Started

Pre-training Encoder and Decoder

Pre-train the encoder and decoder using the FlyingChairsV2 training dataset as follows:

python experiment_scripts/pretrain_features.py --experiment_name XXX --batch_size X --dataset_path /path/to/FlyingChairs2/train

Alternatively, use the checkpoint in the checkpoints directory.

Training NLR++

Train a NLR++ model using the following command:

python experiment_scripts/train_sdf_ibr.py --config_filepath configs/nlrpp_dtu.txt --experiment_name XXX --dataset_path /path/to/dtu/scanXXX --checkpoint_img_encoder /path/to/pretrained/encdec

Note that we have uploaded our processed version of the DTU data here, and the NLR data can be found here.

Meta-learned Initialization (MetaNLR++)

Meta-learn the initialization for the encoder, decoder, aggregation function, and neural SDF using the following command:

python experiment_scripts/train_sdf_ibr_meta.py --config_filepath configs/nlrpp_dtu_meta.txt --experiment_name XXX --dataset_path /path/to/dtu/meta/training --reference_view 24 --checkpoint_img_encoder /path/to/pretrained/encdec

Some optimized initializations for the DTU and NLR datasets can be found in the data directory. Additional models can be provided upon request.

Training MetaNLR++ from Initialization

Use the meta-learned initialization to specialize to a specific scene using the following command:

python experiment_scripts/test_sdf_ibr_meta.py --config_filepath configs/nlrpp_dtu_metaspec.txt --experiment_name XXX --dataset_path /path/to/dtu/scanXXX --reference_view 24 --meta_initialization /path/to/learned/meta/initialization

Evaluation

Test the converged scene on withheld views using the following command:

python experiment_scripts/test_sdf_ibr.py --config_filepath configs/nlrpp_dtu.txt --experiment_name XXX --dataset_path /path/to/dtu/scanXXX --checkpoint_path_test /path/to/checkpoint/to/evaluate

Citation & Contact

If you find our work useful in your research, please cite

@inproceedings{bergman2021metanlr,
author = {Bergman, Alexander W. and Kellnhofer, Petr and Wetzstein, Gordon},
title = {Fast Training of Neural Lumigraph Representations using Meta Learning},
booktitle = {NeurIPS},
year = {2021},
}

If you have any questions or would like access to specific ablations or baselines presented in the paper or supplement (the code presented here is only a subset based off of the source code used to generate the results), please feel free to contact the authors. Alex can be contacted via e-mail at [email protected].

Owner
Alex
Alex
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning This is the official repository for Conservative and Adaptive Penalty fo

7 Nov 22, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022