Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Overview

Human Performance Capture from Monocular Video in the Wild

Paper | Video | Project Page

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild. We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses, without any additional input.

If you find our code or paper useful, please cite as

@inproceedings{guo2021human,
  title={Human Performance Capture from Monocular Video in the Wild},
  author={Guo, Chen and Chen, Xu and Song, Jie and Hilliges, Otmar},
  booktitle={2021 International Conference on 3D Vision (3DV)},
  pages={889--898},
  year={2021},
  organization={IEEE}
}

Quick Start

CLone this repo:

git clone https://github.com/MoyGcc/hpcwild.git
cd  hpcwild
conda env create -f environment.yml
conda activate hpcwild

Additional Dependencies:

  1. Kaolin 0.1.0 (https://github.com/NVIDIAGameWorks/kaolin)
  2. MPI mesh library (https://github.com/MPI-IS/mesh)
  3. torch-mesh-isect (https://github.com/vchoutas/torch-mesh-isect)

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_MALE.pkl

Download checkpoints for external modules:

wget https://download.01.org/opencv/openvino_training_extensions/models/human_pose_estimation/checkpoint_iter_370000.pth
mv /path/to/checkpoint_iter_370000.pth external/lightweight-human-pose-estimation.pytorch/checkpoint_iter_370000.pth

wget https://dl.fbaipublicfiles.com/pifuhd/checkpoints/pifuhd.pt pifuhd.pt 
mv /path/to/pifuhd.pt external/pifuhd/checkpoints/pifuhd.pt

Download IPNet weights: https://datasets.d2.mpi-inf.mpg.de/IPNet2020/IPNet_p5000_01_exp_id01.zip
unzip IPNet_p5000_01_exp_id01.zip
mv /path/to/IPNet_p5000_01_exp_id01 registration/experiments/IPNet_p5000_01_exp_id01

gdown --id 1mcr7ALciuAsHCpLnrtG_eop5-EYhbCmz -O modnet_photographic_portrait_matting.ckpt
mv /path/to/modnet_photographic_portrait_matting.ckpt external/MODNet/pretrained/modnet_photographic_portrait_matting.ckpt

Test on 3DPW dataset

Download 3DPW dataset

  1. modify the dataset_path in test.conf.
  2. run bash mesh_recon.sh to obtain the rigid body shape.
  3. run bash registration.sh to register a SMPL+D model to the rigid human body.
  4. run bash tracking.sh to capture the human performance temporally.

Test on your own video

  1. run OpenPose to obtain the 2D keypoints.
  2. run LGD to acquire the initial 3D poses.
  3. run MODNet to extract sihouettes.

Acknowledgement

We use the code in PIFuHD for the rigid body construction and adapt IPNet for human model registration. We use off-the-shelf methods OpenPose and MODNet for the extraction of 2D keypoints and sihouettes. We sincerely thank these authors for their awesome work.

Owner
Chen Guo
Chen Guo
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022