Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Overview

Human Performance Capture from Monocular Video in the Wild

Paper | Video | Project Page

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild. We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses, without any additional input.

If you find our code or paper useful, please cite as

@inproceedings{guo2021human,
  title={Human Performance Capture from Monocular Video in the Wild},
  author={Guo, Chen and Chen, Xu and Song, Jie and Hilliges, Otmar},
  booktitle={2021 International Conference on 3D Vision (3DV)},
  pages={889--898},
  year={2021},
  organization={IEEE}
}

Quick Start

CLone this repo:

git clone https://github.com/MoyGcc/hpcwild.git
cd  hpcwild
conda env create -f environment.yml
conda activate hpcwild

Additional Dependencies:

  1. Kaolin 0.1.0 (https://github.com/NVIDIAGameWorks/kaolin)
  2. MPI mesh library (https://github.com/MPI-IS/mesh)
  3. torch-mesh-isect (https://github.com/vchoutas/torch-mesh-isect)

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_MALE.pkl

Download checkpoints for external modules:

wget https://download.01.org/opencv/openvino_training_extensions/models/human_pose_estimation/checkpoint_iter_370000.pth
mv /path/to/checkpoint_iter_370000.pth external/lightweight-human-pose-estimation.pytorch/checkpoint_iter_370000.pth

wget https://dl.fbaipublicfiles.com/pifuhd/checkpoints/pifuhd.pt pifuhd.pt 
mv /path/to/pifuhd.pt external/pifuhd/checkpoints/pifuhd.pt

Download IPNet weights: https://datasets.d2.mpi-inf.mpg.de/IPNet2020/IPNet_p5000_01_exp_id01.zip
unzip IPNet_p5000_01_exp_id01.zip
mv /path/to/IPNet_p5000_01_exp_id01 registration/experiments/IPNet_p5000_01_exp_id01

gdown --id 1mcr7ALciuAsHCpLnrtG_eop5-EYhbCmz -O modnet_photographic_portrait_matting.ckpt
mv /path/to/modnet_photographic_portrait_matting.ckpt external/MODNet/pretrained/modnet_photographic_portrait_matting.ckpt

Test on 3DPW dataset

Download 3DPW dataset

  1. modify the dataset_path in test.conf.
  2. run bash mesh_recon.sh to obtain the rigid body shape.
  3. run bash registration.sh to register a SMPL+D model to the rigid human body.
  4. run bash tracking.sh to capture the human performance temporally.

Test on your own video

  1. run OpenPose to obtain the 2D keypoints.
  2. run LGD to acquire the initial 3D poses.
  3. run MODNet to extract sihouettes.

Acknowledgement

We use the code in PIFuHD for the rigid body construction and adapt IPNet for human model registration. We use off-the-shelf methods OpenPose and MODNet for the extraction of 2D keypoints and sihouettes. We sincerely thank these authors for their awesome work.

Owner
Chen Guo
Chen Guo
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022