Sandbox for training deep learning networks

Overview

Deep learning networks

Build Status GitHub License Python Version

This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (re)implementations of various classification, segmentation, detection, and pose estimation models and scripts for training/evaluating/converting.

The following frameworks are used:

For each supported framework, there is a PIP-package containing pure models without auxiliary scripts. List of packages:

Currently, models are mostly implemented on Gluon and then ported to other frameworks. Some models are pretrained on ImageNet-1K, CIFAR-10/100, SVHN, CUB-200-2011, Pascal VOC2012, ADE20K, Cityscapes, and COCO datasets. All pretrained weights are loaded automatically during use. See examples of such automatic loading of weights in the corresponding sections of the documentation dedicated to a particular package:

Installation

To use training/evaluating scripts as well as all models, you need to clone the repository and install dependencies:

git clone gi[email protected]:osmr/imgclsmob.git
pip install -r requirements.txt

Table of implemented classification models

Some remarks:

  • Repo is an author repository, if it exists.
  • a, b, c, d, and e means the implementation of a model for ImageNet-1K, CIFAR-10, CIFAR-100, SVHN, and CUB-200-2011, respectively.
  • A, B, C, D, and E means having a pre-trained model for corresponding datasets.
Model Gluon PyTorch Chainer Keras TF TF2 Paper Repo Year
AlexNet A A A A A A link link 2012
ZFNet A A A A A A link - 2013
VGG A A A A A A link - 2014
BN-VGG A A A A A A link - 2015
BN-Inception A A A - - A link - 2015
ResNet ABCDE ABCDE ABCDE A A ABCDE link link 2015
PreResNet ABCD ABCD ABCD A A ABCD link link 2016
ResNeXt ABCD ABCD ABCD A A ABCD link link 2016
SENet A A A A A A link link 2017
SE-ResNet ABCDE ABCDE ABCDE A A ABCDE link link 2017
SE-PreResNet ABCD ABCD ABCD A A ABCD link link 2017
SE-ResNeXt A A A A A A link link 2017
ResNeSt(A) A A A - - A link link 2020
IBN-ResNet A A - - - A link link 2018
IBN-ResNeXt A A - - - A link link 2018
IBN-DenseNet A A - - - A link link 2018
AirNet A A A - - A link link 2018
AirNeXt A A A - - A link link 2018
BAM-ResNet A A A - - A link link 2018
CBAM-ResNet A A A - - A link link 2018
ResAttNet a a a - - - link link 2017
SKNet a a a - - - link link 2019
SCNet A A A - - A link link 2020
RegNet A A A - - A link link 2020
DIA-ResNet aBCD aBCD aBCD - - - link link 2019
DIA-PreResNet aBCD aBCD aBCD - - - link link 2019
PyramidNet ABCD ABCD ABCD - - ABCD link link 2016
DiracNetV2 A A A - - A link link 2017
ShaResNet a a a - - - link link 2017
CRU-Net A - - - - - link link 2018
DenseNet ABCD ABCD ABCD A A ABCD link link 2016
CondenseNet A A A - - - link link 2017
SparseNet a a a - - - link link 2018
PeleeNet A A A - - A link link 2018
Oct-ResNet abcd a a - - - link - 2019
Res2Net a - - - - - link - 2019
WRN ABCD ABCD ABCD - - a link link 2016
WRN-1bit BCD BCD BCD - - - link link 2018
DRN-C A A A - - A link link 2017
DRN-D A A A - - A link link 2017
DPN A A A - - A link link 2017
DarkNet Ref A A A A A A link link -
DarkNet Tiny A A A A A A link link -
DarkNet-19 a a a a a a link link -
DarkNet-53 A A A A A A link link 2018
ChannelNet a a a - a - link link 2018
iSQRT-COV-ResNet a a - - - - link link 2017
RevNet - a - - - - link link 2017
i-RevNet A A A - - - link link 2018
BagNet A A A - - A link link 2019
DLA A A A - - A link link 2017
MSDNet a ab - - - - link link 2017
FishNet A A A - - - link link 2018
ESPNetv2 A A A - - - link link 2018
DiCENet A A A - - A link link 2019
HRNet A A A - - A link link 2019
VoVNet A A A - - A link link 2019
SelecSLS A A A - - A link link 2019
HarDNet A A A - - A link link 2019
X-DenseNet aBCD aBCD aBCD - - - link link 2017
SqueezeNet A A A A A A link link 2016
SqueezeResNet A A A A A A link - 2016
SqueezeNext A A A A A A link link 2018
ShuffleNet A A A A A A link - 2017
ShuffleNetV2 A A A A A A link - 2018
MENet A A A A A A link link 2018
MobileNet AE AE AE A A AE link link 2017
FD-MobileNet A A A A A A link link 2018
MobileNetV2 A A A A A A link link 2018
MobileNetV3 A A A A - A link link 2019
IGCV3 A A A A A A link link 2018
GhostNet a a a - - a link link 2019
MnasNet A A A A A A link - 2018
DARTS A A A - - - link link 2018
ProxylessNAS AE AE AE - - AE link link 2018
FBNet-C A A A - - A link - 2018
Xception A A A - - A link link 2016
InceptionV3 A A A - - A link link 2015
InceptionV4 A A A - - A link link 2016
InceptionResNetV2 A A A - - A link link 2016
PolyNet A A A - - A link link 2016
NASNet-Large A A A - - A link link 2017
NASNet-Mobile A A A - - A link link 2017
PNASNet-Large A A A - - A link link 2017
SPNASNet A A A - - A link link 2019
EfficientNet A A A A - A link link 2019
MixNet A A A - - A link link 2019
NIN BCD BCD BCD - - - link link 2013
RoR-3 BCD BCD BCD - - - link - 2016
RiR BCD BCD BCD - - - link - 2016
ResDrop-ResNet bcd bcd bcd - - - link link 2016
Shake-Shake-ResNet BCD BCD BCD - - - link link 2017
ShakeDrop-ResNet bcd bcd bcd - - - link - 2018
FractalNet bc bc - - - - link link 2016
NTS-Net E E E - - - link link 2018

Table of implemented segmentation models

Some remarks:

  • a/A corresponds to Pascal VOC2012.
  • b/B corresponds to ADE20K.
  • c/C corresponds to Cityscapes.
  • d/D corresponds to COCO.
  • e/E corresponds to CelebAMask-HQ.
Model Gluon PyTorch Chainer Keras TF TF2 Paper Repo Year
PSPNet ABCD ABCD ABCD - - ABCD link - 2016
DeepLabv3 ABcD ABcD ABcD - - ABcD link - 2017
FCN-8s(d) ABcD ABcD ABcD - - ABcD link - 2014
ICNet C C C - - C link link 2017
SINet C C C - - c link link 2019
BiSeNet e e e - - e link - 2018
DANet C C C - - C link link 2018
Fast-SCNN C C C - - C link - 2019
CGNet c c c - - c link link 2018
DABNet c c c - - c link link 2019
FPENet c c c - - c link - 2019
ContextNet - c - - - - link - 2018
LEDNet c c c - - c link - 2019
ESNet - c - - - - link - 2019
EDANet - c - - - - link link 2018
ENet - c - - - - link - 2016
ERFNet - c - - - - link - 2017
LinkNet - c - - - - link - 2017
SegNet - c - - - - link - 2015
U-Net - c - - - - link - 2015
SQNet - c - - - - link - 2016

Table of implemented object detection models

Some remarks:

  • a/A corresponds to COCO.
Model Gluon PyTorch Chainer Keras TF TF2 Paper Repo Year
CenterNet a a a - - a link link 2019

Table of implemented human pose estimation models

Some remarks:

  • a/A corresponds to COCO.
Model Gluon PyTorch Chainer Keras TF TF2 Paper Repo Year
AlphaPose A A A - - A link link 2016
SimplePose A A A - - A link link 2018
SimplePose(Mobile) A A A - - A link - 2018
Lightweight OpenPose A A A - - A link link 2018
IBPPose A A A - - A link link 2019
Comments
  • (tf)Resnesta  model  problems

    (tf)Resnesta model problems

    TypeError: Failed to convert object of type <class 'tuple'> to Tensor. Contents: (None, 128, 128, 2, 64). Consider casting elements to a supported type. There is no problem with the other models I use.

    bug 
    opened by Mrmdzz 12
  • Inconsistent behavior between SimplePose and SimplePoseMobile models

    Inconsistent behavior between SimplePose and SimplePoseMobile models

    I'm using SimplePose models and train them with my custom dataset generator with this snippet:

    print(f'Tensror Flow version: {tf.__version__}')
    tf.keras.backend.clear_session()
    
    BATCH_SIZE=64
    NUM_KEYPOINTS=14
    IMAGE_RES=128
    HEATMAP_RES=32
    
    net = tf2cv_get_model("simplepose_mobile_mobilenetv3_large_w1_coco", 
                          pretrained_backbone=True,
                          keypoints=NUM_KEYPOINTS, 
                          return_heatmap=True)
    
    net.build(input_shape=(BATCH_SIZE, IMAGE_RES, IMAGE_RES, 3))
    net.heatmap_max_det.build((BATCH_SIZE, HEATMAP_RES, HEATMAP_RES, NUM_KEYPOINTS))
    net.summary()
    net.compile(optimizer=tf.keras.optimizers.Adam(lr=5e-4), 
                loss=tf.keras.losses.mean_squared_error)
    
    history = net.fit_generator(
      generator=train_data,
      validation_data=valid_data,
      epochs=15
    )
    

    And that works or not depending on the model type I choose. If I use any non mobile model ( simplepose_resnet18_coco for example) then everything works, the network trains and predicts accurate results. Whereas if use any mobile model like simplepose_mobile_mobilenetv3_large_w1_coco or simplepose_mobile_resnet18_coco, the above code will break with the following error:

    Tensror Flow version: 2.1.0
    Downloading /root/.tensorflow/models/mobilenetv3_large_w1-0769-f66596ae.tf2.h5.zip from https://github.com/osmr/imgclsmob/releases/download/v0.0.422/mobilenetv3_large_w1-0769-f66596ae.tf2.h5.zip...
    Model: "simple_pose_mobile"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    backbone (Sequential)        multiple                  2996352   
    _________________________________________________________________
    decoder (Sequential)         multiple                  1798080   
    _________________________________________________________________
    heatmap_max_det (HeatmapMaxD multiple                  0         
    =================================================================
    Total params: 4,794,432
    Trainable params: 4,768,240
    Non-trainable params: 26,192
    _________________________________________________________________
    
    TypeError: in converted code:
    
        /usr/local/lib/python3.6/dist-packages/tf2cv/models/simpleposemobile_coco.py:94 call  *
            heatmap = self.decoder(x, training=training)
        /tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/engine/base_layer.py:773 __call__
            outputs = call_fn(cast_inputs, *args, **kwargs)
        /usr/local/lib/python3.6/dist-packages/tf2cv/models/common.py:2016 call  *
            x = self.pix_shuffle(x)
        /tensorflow-2.1.0/python3.6/tensorflow_core/python/keras/engine/base_layer.py:773 __call__
            outputs = call_fn(cast_inputs, *args, **kwargs)
    # .... 
    
        TypeError: Failed to convert object of type <class 'tuple'> to Tensor. Contents: (None, 4, 4, 128, 4). Consider casting elements to a supported type.
    

    It looks to me like the net output is in some unexpected format. See this gist for the full output: https://gist.github.com/grin/d1a9836aca5ca462dbb03527246ba941

    What could be causing this error? Am I missing some crucial configuration for mobile models? I would expect the two APIs work similarly.

    Thank you

    bug 
    opened by grin 9
  • Input size segmentation!

    Input size segmentation!

    I am trying to use pspnet_resnetd101b_voc as follows:

    sample_batch_size = 1
    channel = 3
    height, width = 224.224
    dummy_input = torch.randn(sample_batch_size, channel, height, width)
    out = pspnet_resnetd101b_voc(dummy_input)
    

    But I get following error: Expected more than 1 value per channel when training, got input size torch.Size([1, 512, 1, 1])

    What are the right data format for this model or similar as pspnet_resnetd101b_coco?.

    Note: With Imagenet pretrained model resnetd101b works fine.

    question 
    opened by MarioProjects 8
  • Squeezenext sqnxt23v5_w2 callbacks error

    Squeezenext sqnxt23v5_w2 callbacks error

    checkpoint = ModelCheckpoint('./gdrive/My Drive/MLAI_files/project-images/Full_Dataset/squeezenext_weights.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', save_best_only=True, mode='min') callbacks_list = [checkpoint] hist = new_model.fit_generator(generator = my_gen(train_generator), steps_per_epoch = STEP_SIZE_TRAIN, validation_data = my_gen(valid_generator), validation_steps = STEP_SIZE_VALID, epochs = 3, callbacks = callbacks_list)

    Epoch 1/3 38/377 [==>...........................] - ETA: 3:54 - loss: 2.0859 - acc: 0.2188/usr/local/lib/python3.6/dist-packages/PIL/Image.py:914: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images 'to RGBA images') 117/377 [========>.....................] - ETA: 2:35 - loss: 2.0482 - acc: 0.2356/usr/local/lib/python3.6/dist-packages/PIL/TiffImagePlugin.py:742: UserWarning: Corrupt EXIF data. Expecting to read 4 bytes but only got 0. warnings.warn(str(msg)) 377/377 [==============================] - 221s 586ms/step - loss: 2.0704 - acc: 0.2301 - val_loss: 5.2917 - val_acc: 0.2820

    TypeError Traceback (most recent call last) in () 4 validation_steps = STEP_SIZE_VALID, 5 epochs = 3, ----> 6 callbacks = callbacks_list)

    12 frames /usr/local/lib/python3.6/dist-packages/keras/engine/saving.py in get_json_type(obj) 89 return obj.name 90 ---> 91 raise TypeError('Not JSON Serializable: %s' % (obj,)) 92 93 from .. import version as keras_version

    TypeError: Not JSON Serializable: <module 'tensorflow' from '/usr/local/lib/python3.6/dist-packages/tensorflow/init.py'>

    question 
    opened by wanx4910 8
  • Multiple outputs using PSPNet pre-trained model on Cityscapes

    Multiple outputs using PSPNet pre-trained model on Cityscapes

    Hello, When the PSPNet pre-trained model is used, the output is a tuple of 2 tensors. Can someone clarify what they are and how to achieve 1 output among them such that computation time can be saved?

    net = get_model('pspnet_resnetd101b_cityscapes',pretrained_backbone=True,pretrained = True) yp = net(X) yp.size()

    This throws an error: AttributeError Traceback (most recent call last) in 1 yp = net(X) # model outputs 2 different learning rates ----> 2 yp.size()

    AttributeError: 'tuple' object has no attribute 'size'

    question 
    opened by Swaraj-72 7
  • No pre-trained weights for the DPN models?

    No pre-trained weights for the DPN models?

    Hello,

    I am using fastai to implement some computer vision project. I recently stumbled across this repo and found it a great add-on to my arsenal of models. However, I am trying to create a pretrained DPN98. I found someone in the fastai repo that is having a similar problem with Alexnet (though they didn't specify where they got the model from) here. I also tried DPN 68 with same result.

    The traceback I get looks like this:

    ---------------------------------------------------------------------------
    Exception                                 Traceback (most recent call last)
    <ipython-input-21-096da45f530c> in <module>
          1 # Setup the model and
    ----> 2 learn = cnn_learner(data, dpn98, metrics=[precision, accuracy], callback_fns=ShowGraph)
          3 learn.model_dir='/kaggle/working/'
          4 learn.freeze()
    
    /opt/conda/lib/python3.6/site-packages/fastai/vision/learner.py in cnn_learner(data, base_arch, cut, pretrained, lin_ftrs, ps, custom_head, split_on, bn_final, init, concat_pool, **kwargs)
         96     meta = cnn_config(base_arch)
         97     model = create_cnn_model(base_arch, data.c, cut, pretrained, lin_ftrs, ps=ps, custom_head=custom_head,
    ---> 98         bn_final=bn_final, concat_pool=concat_pool)
         99     learn = Learner(data, model, **kwargs)
        100     learn.split(split_on or meta['split'])
    
    /opt/conda/lib/python3.6/site-packages/fastai/vision/learner.py in create_cnn_model(base_arch, nc, cut, pretrained, lin_ftrs, ps, custom_head, bn_final, concat_pool)
         84     body = create_body(base_arch, pretrained, cut)
         85     if custom_head is None:
    ---> 86         nf = num_features_model(nn.Sequential(*body.children())) * (2 if concat_pool else 1)
         87         head = create_head(nf, nc, lin_ftrs, ps=ps, concat_pool=concat_pool, bn_final=bn_final)
         88     else: head = custom_head
    
    /opt/conda/lib/python3.6/site-packages/fastai/callbacks/hooks.py in num_features_model(m)
        118     sz = 64
        119     while True:
    --> 120         try: return model_sizes(m, size=(sz,sz))[-1][1]
        121         except Exception as e:
        122             sz *= 2
    
    /opt/conda/lib/python3.6/site-packages/fastai/callbacks/hooks.py in model_sizes(m, size)
        111     "Pass a dummy input through the model `m` to get the various sizes of activations."
        112     with hook_outputs(m) as hooks:
    --> 113         x = dummy_eval(m, size)
        114         return [o.stored.shape for o in hooks]
        115 
    
    /opt/conda/lib/python3.6/site-packages/fastai/callbacks/hooks.py in dummy_eval(m, size)
        106 def dummy_eval(m:nn.Module, size:tuple=(64,64)):
        107     "Pass a `dummy_batch` in evaluation mode in `m` with `size`."
    --> 108     return m.eval()(dummy_batch(m, size))
        109 
        110 def model_sizes(m:nn.Module, size:tuple=(64,64))->Tuple[Sizes,Tensor,Hooks]:
    
    /opt/conda/lib/python3.6/site-packages/fastai/callbacks/hooks.py in dummy_batch(m, size)
        101 def dummy_batch(m: nn.Module, size:tuple=(64,64))->Tensor:
        102     "Create a dummy batch to go through `m` with `size`."
    --> 103     ch_in = in_channels(m)
        104     return one_param(m).new(1, ch_in, *size).requires_grad_(False).uniform_(-1.,1.)
        105 
    
    /opt/conda/lib/python3.6/site-packages/fastai/torch_core.py in in_channels(m)
        261     for l in flatten_model(m):
        262         if hasattr(l, 'weight'): return l.weight.shape[1]
    --> 263     raise Exception('No weight layer')
        264 
        265 class ModelOnCPU():
    
    Exception: No weight layer
    

    I'll include the proceeding code I have up to this point to help you get an idea of what environment I am running. Note, this is in Kaggle.

    from fastai.vision import *
    # For more models
    !pip install pytorchcv
    from pytorchcv.model_provider import get_model as ptcv_get_model
    
    # Data augs
    tfms = get_transforms()
    
    # Get databunch to feed to the network
    data = ImageDataBunch.from_folder(path, valid_pct=0.2, size = 1028, bs = 2, ds_tfms = tfms, padding_mode='zeros').normalize(imagenet_stats)
    
    # Custom arch
    def dpn98(pretrained=False):
        return ptcv_get_model("dpn98", pretrained=False).features
    
    # Get custom precision metric
    precision = Precision(pos_label = 0)
    
    # Setup the model and 
    learn = cnn_learner(data, dpn98, metrics=[precision, accuracy], callback_fns=ShowGraph)
    
    question 
    opened by djpecot 7
  • How to modify pre-trained models?

    How to modify pre-trained models?

    Is there a good way to go about modifying the pre-trained models? I want to tweak the forward() function to return activations at a few layers. I'm going to be comparing between several CIFAR models so training them all myself isn't really viable.

    Thanks!

    question 
    opened by DWhettam 7
  • incomplete example

    incomplete example

    hi, thank you for the great repository. The problem that I came to is that I cannot find a list of classes for which the tf2 models of imagenet1k were trained for. Also the website of imagenet is not very helpfull in that regard.

    For example, how could I load an image, classify it and print the class label? An example for how to do this would be very helpful to add.

    question 
    opened by thunderbug1 6
  • Inference results in weird values

    Inference results in weird values

    Hi,

    I tried to use ImageNet classifier with a pretrained model SE-ResNext50. I added just a Softmax activation. It results in values with mean 0.01 and range about 0.005-0.02, which don't seem like proper softmax predictions. Actual results are incorrect.

    If I change 1 line to use torchvision.models.resnet50, inference works like a charm: it detects dogs, cars, etc. Is there anything I'm missing? I'm using pytorchcv==0.0.45.

    Btw, maybe you should add __version__ into the package.

    Cheers!

    question 
    opened by artyompal 6
  • questions while a experimental train

    questions while a experimental train

    Hi Thanks for such a brilliant work.

    i was going to train a ghost net model on tf2 by train_tf2.py. And i used a tiny dataset at first which contains 78 images in training set and 40 for val and set epoch as 1, batch size as 4. But it seem cannot stop this single epoch. Let me show you in the code. I put some print and counter into the loop, like.

    print(train_img_count)
     num_epochs = args.num_epochs
     print(num_epochs)
     for epoch in range(num_epochs):
         print(20) #meanless thing
         conuter= 0
         for images, labels in train_data:
             print(conuter)
             conuter+=1
             train_step(images, labels)
         print(16) #meanless thing
    

    In this case, the terminal keep printing out the counter . Although it didn't throw any errors or excepts, it just keep runing. The counter is much bigger than the number of train images(300 vs 78). The terminal output going like

    Found 78 images belonging to 2 classes.
    Found 40 images belonging to 2 classes.
    78             # train_img_count
    1               # num_epochs
    20            # that meanless number
    0               #counter started from here
    1
    2
    3
    4
    5
    6
    .......
    300
    

    Any idea about this?

    question 
    opened by JayFu 5
  • How to change default output shape?

    How to change default output shape?

    The imagenet-pretrained model has 1000 classes, but when I only want to replace the last dense layer, I got the error. It looks like classes=1000 cannot be changed. I would suggest add some argument include_top=False just like in tf.keras.applications.ResNet50, which we can customize the last dense layer.

    net = kecv_get_model("resnet50", pretrained=True, classes=100) https://github.com/osmr/imgclsmob/blob/4b01a0e635e54d08929d9b340e8d369f5add0275/keras_/kerascv/models/resnet.py#L223

    AssertionError                            Traceback (most recent call last)
    <ipython-input-26-c5cb45b6fa44> in <module>
    ----> 1 net = kecv_get_model("resnet50", pretrained=True, classes=100)
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/model_provider.py in get_model(name, **kwargs)
        246     if name not in _models:
        247         raise ValueError("Unsupported model: {}".format(name))
    --> 248     net = _models[name](**kwargs)
        249     return net
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/models/resnet.py in resnet50(**kwargs)
        585         Location for keeping the model parameters.
        586     """
    --> 587     return get_resnet(blocks=50, model_name="resnet50", **kwargs)
        588 
        589 
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/models/resnet.py in get_resnet(blocks, bottleneck, conv1_stride, width_scale, model_name, pretrained, root, **kwargs)
        376             net=net,
        377             model_name=model_name,
    --> 378             local_model_store_dir_path=root)
        379 
        380     return net
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/models/model_store.py in download_model(net, model_name, local_model_store_dir_path)
        511         file_path=get_model_file(
        512             model_name=model_name,
    --> 513             local_model_store_dir_path=local_model_store_dir_path))
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/models/model_store.py in load_model(net, file_path, skip_mismatch)
        489             _load_weights_from_hdf5_group(
        490                 f=f,
    --> 491                 layers=net.layers)
        492 
        493 
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/models/model_store.py in _load_weights_from_hdf5_group(f, layers)
        391         weight_values = _preprocess_weights_for_loading(
        392             layer=layer,
    --> 393             weights=weight_values)
        394         if len(weight_values) != len(symbolic_weights):
        395             raise ValueError('Layer #' + str(k) +
    
    ~/miniconda3/envs/tf114/lib/python3.6/site-packages/kerascv/models/model_store.py in _preprocess_weights_for_loading(layer, weights)
        346             weights[0] = np.transpose(weights[0], (2, 3, 0, 1))
        347     for i in range(len(weights)):
    --> 348         assert (K.int_shape(layer.weights[i]) == weights[i].shape)
        349     return weights
        350 
    
    AssertionError:
    
    question 
    opened by zihaozhihao 5
  • [PyTorch] simplepose_resnet18_coco model weights loading error

    [PyTorch] simplepose_resnet18_coco model weights loading error

    The simplepose_resnet18_coco pretrained weights cannot be loaded using pytorchcv.

    How to reproduce

    1. Create and activate a new environment
    conda create -n avl_simplepose python=3.9
    conda activate avl_simplepose
    
    1. Install pytorchcv and torch packages (pip). Note: the exact torch install command may vary. I used the one from the official site for CUDA 11.6
    pip install pytorchcv
    pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
    
    1. Make sure no .torch folder exists in the home directory (may not be needed to reproduce the issue).
    2. Run the following commands (+log):
    Python 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:58:50) 
    [GCC 10.3.0] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import torch
    >>> from pytorchcv.model_provider import get_model as ptcv_get_model
    >>> 
    >>> ptcv_get_model("simplepose_resnet18_coco", pretrained=True)
    Downloading /home/lorenzo/.torch/models/simplepose_resnet18_coco-6631-7c3656b3.pth.zip from https://github.com/osmr/imgclsmob/releases/download/v0.0.455/simplepose_resnet18_coco-6631-7c3656b3.pth.zip...
    
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/lorenzo/miniconda3/envs/prova_avl_simplepose/lib/python3.9/site-packages/pytorchcv/model_provider.py", line 1233, in get_model
        net = _models[name](**kwargs)
      File "/home/lorenzo/miniconda3/envs/prova_avl_simplepose/lib/python3.9/site-packages/pytorchcv/models/simplepose_coco.py", line 155, in simplepose_resnet18_coco
        return get_simplepose(backbone=backbone, backbone_out_channels=512, keypoints=keypoints,
      File "/home/lorenzo/miniconda3/envs/prova_avl_simplepose/lib/python3.9/site-packages/pytorchcv/models/simplepose_coco.py", line 129, in get_simplepose
        download_model(
      File "/home/lorenzo/miniconda3/envs/prova_avl_simplepose/lib/python3.9/site-packages/pytorchcv/models/model_store.py", line 827, in download_model
        load_model(
      File "/home/lorenzo/miniconda3/envs/prova_avl_simplepose/lib/python3.9/site-packages/pytorchcv/models/model_store.py", line 804, in load_model
        net.load_state_dict(pretrained_state)
      File "/home/lorenzo/miniconda3/envs/prova_avl_simplepose/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1667, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for SimplePose:
            Missing key(s) in state_dict: "backbone.0.conv.conv.weight", "backbone.0.conv.bn.weight", "backbone.0.conv.bn.bias", "backbone.0.conv.bn.running_mean", "backbone.0.conv.bn.running_var", "backbone.1.unit1.body.conv1.conv.weight", "backbone.1.unit1.body.conv1.bn.weight", "backbone.1.unit1.body.conv1.bn.bias", "backbone.1.unit1.body.conv1.bn.running_mean", "backbone.1.unit1.body.conv1.bn.running_var", "backbone.1.unit1.body.conv2.conv.weight", "backbone.1.unit1.body.conv2.bn.weight", "backbone.1.unit1.body.conv2.bn.bias", "backbone.1.unit1.body.conv2.bn.running_mean", "backbone.1.unit1.body.conv2.bn.running_var", "backbone.1.unit2.body.conv1.conv.weight", "backbone.1.unit2.body.conv1.bn.weight", "backbone.1.unit2.body.conv1.bn.bias", "backbone.1.unit2.body.conv1.bn.running_mean", "backbone.1.unit2.body.conv1.bn.running_var", "backbone.1.unit2.body.conv2.conv.weight", "backbone.1.unit2.body.conv2.bn.weight", "backbone.1.unit2.body.conv2.bn.bias", "backbone.1.unit2.body.conv2.bn.running_mean", "backbone.1.unit2.body.conv2.bn.running_var", "backbone.2.unit1.body.conv1.conv.weight", "backbone.2.unit1.body.conv1.bn.weight", "backbone.2.unit1.body.conv1.bn.bias", "backbone.2.unit1.body.conv1.bn.running_mean", "backbone.2.unit1.body.conv1.bn.running_var", "backbone.2.unit1.body.conv2.conv.weight", "backbone.2.unit1.body.conv2.bn.weight", "backbone.2.unit1.body.conv2.bn.bias", "backbone.2.unit1.body.conv2.bn.running_mean", "backbone.2.unit1.body.conv2.bn.running_var", "backbone.2.unit1.identity_conv.conv.weight", "backbone.2.unit1.identity_conv.bn.weight", "backbone.2.unit1.identity_conv.bn.bias", "backbone.2.unit1.identity_conv.bn.running_mean", "backbone.2.unit1.identity_conv.bn.running_var", "backbone.2.unit2.body.conv1.conv.weight", "backbone.2.unit2.body.conv1.bn.weight", "backbone.2.unit2.body.conv1.bn.bias", "backbone.2.unit2.body.conv1.bn.running_mean", "backbone.2.unit2.body.conv1.bn.running_var", "backbone.2.unit2.body.conv2.conv.weight", "backbone.2.unit2.body.conv2.bn.weight", "backbone.2.unit2.body.conv2.bn.bias", "backbone.2.unit2.body.conv2.bn.running_mean", "backbone.2.unit2.body.conv2.bn.running_var", "backbone.3.unit1.body.conv1.conv.weight", "backbone.3.unit1.body.conv1.bn.weight", "backbone.3.unit1.body.conv1.bn.bias", "backbone.3.unit1.body.conv1.bn.running_mean", "backbone.3.unit1.body.conv1.bn.running_var", "backbone.3.unit1.body.conv2.conv.weight", "backbone.3.unit1.body.conv2.bn.weight", "backbone.3.unit1.body.conv2.bn.bias", "backbone.3.unit1.body.conv2.bn.running_mean", "backbone.3.unit1.body.conv2.bn.running_var", "backbone.3.unit1.identity_conv.conv.weight", "backbone.3.unit1.identity_conv.bn.weight", "backbone.3.unit1.identity_conv.bn.bias", "backbone.3.unit1.identity_conv.bn.running_mean", "backbone.3.unit1.identity_conv.bn.running_var", "backbone.3.unit2.body.conv1.conv.weight", "backbone.3.unit2.body.conv1.bn.weight", "backbone.3.unit2.body.conv1.bn.bias", "backbone.3.unit2.body.conv1.bn.running_mean", "backbone.3.unit2.body.conv1.bn.running_var", "backbone.3.unit2.body.conv2.conv.weight", "backbone.3.unit2.body.conv2.bn.weight", "backbone.3.unit2.body.conv2.bn.bias", "backbone.3.unit2.body.conv2.bn.running_mean", "backbone.3.unit2.body.conv2.bn.running_var", "backbone.4.unit1.body.conv1.conv.weight", "backbone.4.unit1.body.conv1.bn.weight", "backbone.4.unit1.body.conv1.bn.bias", "backbone.4.unit1.body.conv1.bn.running_mean", "backbone.4.unit1.body.conv1.bn.running_var", "backbone.4.unit1.body.conv2.conv.weight", "backbone.4.unit1.body.conv2.bn.weight", "backbone.4.unit1.body.conv2.bn.bias", "backbone.4.unit1.body.conv2.bn.running_mean", "backbone.4.unit1.body.conv2.bn.running_var", "backbone.4.unit1.identity_conv.conv.weight", "backbone.4.unit1.identity_conv.bn.weight", "backbone.4.unit1.identity_conv.bn.bias", "backbone.4.unit1.identity_conv.bn.running_mean", "backbone.4.unit1.identity_conv.bn.running_var", "backbone.4.unit2.body.conv1.conv.weight", "backbone.4.unit2.body.conv1.bn.weight", "backbone.4.unit2.body.conv1.bn.bias", "backbone.4.unit2.body.conv1.bn.running_mean", "backbone.4.unit2.body.conv1.bn.running_var", "backbone.4.unit2.body.conv2.conv.weight", "backbone.4.unit2.body.conv2.bn.weight", "backbone.4.unit2.body.conv2.bn.bias", "backbone.4.unit2.body.conv2.bn.running_mean", "backbone.4.unit2.body.conv2.bn.running_var". 
    
    opened by lrzpellegrini 0
  • Inplace RunError when testing backward of RevNet with PyTorch 1.11.0

    Inplace RunError when testing backward of RevNet with PyTorch 1.11.0

    Hi, thank you for your good code, recently I've tried to reproduce RevNet with PyTorch 1.11.0, and I use your code. However, I got a RunError as follows:

    File ~\Documents\RevNet\revnet.py:71, in ReversibleBlockFunction.backward(ctx, grad_y)
         68 gm = ctx.gm
         70 with torch.autograd.set_detect_anomaly(True):
    ---> 71     x, y = ctx.saved_variables
         72 # x, y = ctx.saved_tensors
         73 y1, y2 = torch.chunk(y, chunks=2, dim=1)
    
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [0]], which is output 0 of ReversibleBlockFunctionBackward, is at version 3; expected version 2 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck!
    

    I've searched potential solution on the Internet but I still can not solve it. One solution is to downgrade the pytorch version to 1.4.0 but this version does not support the GPU I use. Could you provide some suggestions for me? I appreciate your help. Thanks!

    opened by taokz 0
  • added a get config method for wrn cifar in order to be able to deserialize it

    added a get config method for wrn cifar in order to be able to deserialize it

    Not sure if you would like me to do the same for all the other TF models, but I can. Also did not add unit tests, but this is also doable, just tell me.

    opened by zaccharieramzi 0
  • Support the XDG Base Directory Specification

    Support the XDG Base Directory Specification

    pytorch now supports the XDG Base Directory specification https://github.com/pytorch/pytorch/issues/14693.

    The pytorchcv module, provided by this repo is still using the hardcoded ~/.torch/models path.

    You can see the "correct" logic for finding the .torch cache directory here.

    opened by RuRo 0
  • PyramidNet maybe wrong.

    PyramidNet maybe wrong.

    image PyramidNet's residual block(d) is not the same as pre-resnet's(a). It deletes the first ReLU and adds a new BN at the end. I noticed that in the pytorch version pyramidnet.py, the model is built just on pre_conv1x1_block. Waitting for your verification.

    opened by IsidoreSong 0
  • pytorchcv in_size argument

    pytorchcv in_size argument

    Hi thank you for wonderful DL networks repo.

    I have one question to ask about pytorchcv

    in pytorch/pytorchcv/models/squeezenext.py I found that SqueezeNext class has in_size argument but never being used.

    I would like to modify my input img size form get_model function by changing in_size argument.

    Is there any reason you are not using in_size argument currently?

    opened by Younghoon-Lee 0
Releases(v0.0.569)
Owner
Oleg Sémery
Mathematician
Oleg Sémery
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022