Implementation of Feedback Transformer in Pytorch

Overview

Feedback Transformer - Pytorch

Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have access to the representations of all previous layers through time. This is achieved by aggregating the outputs of all layers into a shared memory, which each token across layers can attend to at each time step.

The main drawback is longer training time, due to its non-parallel nature. But I thought I'd build it to further exploration and research into this line of work.

Yannic Kilcher video

I also took the liberty to add some various enhancements, including pre-normalization, GLU gated feedforwards, as well as simplified T5 relative positional embeddings.

Install

$ pip install feedback-transformer-pytorch

Usage

import torch
from feedback_transformer_pytorch import FeedbackTransformer

model = FeedbackTransformer(
    num_tokens = 20000,           # number of tokens
    dim = 512,                    # dimension
    depth = 6,                    # depth
    seq_len = 2,                  # the sequence length of each segment or window
    mem_len = 256,                # length of the memory buffer
    dim_head = 64,                # dimension of each head
    heads = 8,                    # number of heads
    attn_dropout = 0.1,           # attention dropout
    ff_dropout = 0.1              # feedforward dropout
).cuda()

x = torch.randint(0, 20000, (2, 64)).cuda()
model(x)  # (2, 64, 20000)

If you would like to have fine control over the memory (when to detach, etc), you can do it with some extra keyword arguments on .forward

import torch
from feedback_transformer_pytorch import FeedbackTransformer

model = FeedbackTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 32,
    mem_len = 256
).cuda()

x1 = torch.randint(0, 20000, (2, 32)).cuda()
x2 = torch.randint(0, 20000, (2, 32)).cuda()
x3 = torch.randint(0, 20000, (2, 32)).cuda()

out1, mem1 = model(x1, return_memory = True)
out2, mem2 = model(x2, memory = mem1, return_memory = True)
out3, mem3 = model(x3, memory = mem2, return_memory = True)  # (2, 32, 20000)

Citations

@misc{fan2021addressing,
    title   = {Addressing Some Limitations of Transformers with Feedback Memory}, 
    author  = {Angela Fan and Thibaut Lavril and Edouard Grave and Armand Joulin and Sainbayar Sukhbaatar},
    year    = {2021},
    eprint  = {2002.09402},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Should it really be using lower layers output for keys and values?

    Should it really be using lower layers output for keys and values?

    Could you explain the logic of how the key-value pairs are formed at these lines and whether it is necessary?

    https://github.com/lucidrains/feedback-transformer-pytorch/blob/d7d8939910d1491f01a3d93ce81d4663925fb389/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L146-L151

    It looks to me that line 146 transforms the output of the layer below (x) to keys and values, and the following lines combine these keys and values with the memory. I thought that x should only be used for forming the query here, and only the existing memory is used for keys and values.

    opened by tarvaina 6
  • In place operation with gradient

    In place operation with gradient

    https://github.com/lucidrains/feedback-transformer-pytorch/blob/main/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L173 I think this is an error.

    opened by hadaev8 4
  • Bug in weighted sum

    Bug in weighted sum

    Bug in https://github.com/lucidrains/feedback-transformer-pytorch/blob/main/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L264

    Should be layer_weight = rearrange(layer_weight, 'd -> d () () ()')

    opened by Victor0118 1
  • Input/Output dimensions

    Input/Output dimensions

    Hey @lucidrains

    Can I check the dimensions of the input and output, is it (seq_len, dim) -> (? ,dim, tokens)?

    model = FeedbackTransformer(
        num_tokens = 20000,           # number of tokens
        dim = 512,                    # dimension
        depth = 6,                    # depth
        seq_len = 2,                  # the sequence length of each segment or window
        mem_len = 256,                # length of the memory buffer
        dim_head = 64,                # dimension of each head
        heads = 8,                    # number of heads
        attn_dropout = 0.1,           # attention dropout
        ff_dropout = 0.1              # feedforward dropout
    ).cuda()
    
    x = torch.randint(0, 256, (2, 512)).cuda()
    model(x)  # (1, 512, 20000)
    
    opened by iiSeymour 1
  • Non intuitive memory usage with cross attention

    Non intuitive memory usage with cross attention

    Give simple 256 dim and 512 len tensor and memory len 16 feedback transformer uses 3.6gm memory after forward pass. With cross attention on 100 len tensor usage grows to 14gb.

    While parallel version uses 3.1gb and 3.5gb.

    Notebooks for testing https://colab.research.google.com/drive/1dRImydFn3WthOXdLYIvdf5bsqjXcmhC5?usp=sharing https://colab.research.google.com/drive/1n653j4Pz9_U7OukhTlUbomAHMvpPXwx0?usp=sharing

    opened by hadaev8 0
  • I think mask padding value should be False

    I think mask padding value should be False

    Here https://github.com/lucidrains/feedback-transformer-pytorch/blob/with-cross-attention/feedback_transformer_pytorch/feedback_transformer_pytorch.py#L181

    opened by hadaev8 0
  • ETA for the enwiki8 example

    ETA for the enwiki8 example

    Hey @lucidrains,

    Any eta on the example for auto-regressive enwiki8 example? I and others would really appreciate it as always :)

    Also, if you can provide an example for training on custom line-by-line TXT datasets, it would be absolutely fantastic.

    Thank you.

    opened by asigalov61 0
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022