(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Overview

Wasserstein Distances for Stereo Disparity Estimation

Accepted in NeurIPS 2020 as Spotlight. [Project Page]

Wasserstein Distances for Stereo Disparity Estimation

by Divyansh Garg, Yan Wang, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger and Wei-Lun Chao

Figure

Citation

@inproceedings{div2020wstereo,
  title={Wasserstein Distances for Stereo Disparity Estimation},
  author={Garg, Divyansh and Wang, Yan and Hariharan, Bharath and Campbell, Mark and Weinberger, Kilian and Chao, Wei-Lun},
  booktitle={NeurIPS},
  year={2020}
}

Introduction

Existing approaches to depth or disparity estimation output a distribution over a set of pre-defined discrete values. This leads to inaccurate results when the true depth or disparity does not match any of these values. The fact that this distribution is usually learned indirectly through a regression loss causes further problems in ambiguous regions around object boundaries. We address these issues using a new neural network architecture that is capable of outputting arbitrary depth values, and a new loss function that is derived from the Wasserstein distance between the true and the predicted distributions. We validate our approach on a variety of tasks, including stereo disparity and depth estimation, and the downstream 3D object detection. Our approach drastically reduces the error in ambiguous regions, especially around object boundaries that greatly affect the localization of objects in 3D, achieving the state-of-the-art in 3D object detection for autonomous driving.

Contents

Our Wasserstein loss modification W_loss can be easily plugged in existing stereo depth models to improve the training and obtain better results.

We release the code for CDN-PSMNet and CDN-SDN models.

Requirements

  1. Python 3.7
  2. Pytorch 1.2.0+
  3. CUDA
  4. pip install -r ./requirements.txt
  5. SceneFlow
  6. KITTI

Pretrained Models

TO BE ADDED.

Datasets

You have to download the SceneFlow and KITTI datasets. The structures of the datasets are shown in below.

SceneFlow Dataset Structure

SceneFlow
    | monkaa
        | frames_cleanpass
        | disparity
    | driving
        | frames_cleanpass
        | disparity
    | flyingthings3d
        | frames_cleanpass 
        | disparity

KITTI Object Detection Dataset Structure

KITTI
    | training
        | calib
        | image_2
        | image_3
        | velodyne
    | testing
        | calib
        | image_2
        | image_3

Generate soft-links of SceneFlow Datasets. The results will be saved in ./sceneflow folder. Please change to fakepath path-to-SceneFlow to the SceneFlow dataset location before running the script.

python sceneflow.py --path path-to-SceneFlow --force

Convert the KITTI velodyne ground truths to depth maps. Please change to fakepath path-to-KITTI to the SceneFlow dataset location before running the script.

python ./src/preprocess/generate_depth_map.py --data_path path-to-KITTI/ --split_file ./split/trainval.txt

Optionally download KITTI2015 datasets for evaluating stereo disparity models.

Training and Inference

We have provided all pretrained models Pretrained Models. If you only want to generate the predictions, you can directly go to step 3.

The default setting requires four gpus to train. You can use smaller batch sizes which are btrain and bval, if you don't have enough gpus.

We provide code for both stereo disparity and stereo depth models.

1 Train CDN-SDN from Scratch on SceneFlow Dataset

python ./src/main_depth.py -c src/configs/sceneflow_w1.config

The checkpoints are saved in ./results/stack_sceneflow_w1/.

Follow same procedure to train stereo disparity model, but use src/main_disp.py and change to a disparity config.

2 Train CDN-SDN on KITTI Dataset

python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --pretrain ./results/sceneflow_w1/checkpoint.pth.tar --dataset  path-to-KITTI/training/

Before running, please change the fakepath path-to-KITTI/ to the correct one. --pretrain is the path to the pretrained model on SceneFlow. The training results are saved in ./results/kitti_w1_train.

If you are working on evaluating CDN on KITTI testing set, you might want to train CDN on training+validation sets. The training results will be saved in ./results/sdn_kitti_trainval.

python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --pretrain ./results/sceneflow_w1/checkpoint.pth.tar \
    --dataset  path-to-KITTI/training/ --split_train ./split/trainval.txt \
    --save_path ./results/sdn_kitti_trainval

The disparity models can also be trained on KITTI2015 datasets using src/kitti2015_w1_disp.config.

3 Generate Predictions

Please change the fakepath path-to-KITTI. Moreover, if you use the our provided checkpoint, please modify the value of --resume to the checkpoint location.

  • a. Using the model trained on KITTI training set, and generating predictions on training + validation sets.
python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --resume ./results/sdn_kitti_train/checkpoint.pth.tar --datapath  path-to-KITTI/training/ \
    --data_list ./split/trainval.txt --generate_depth_map --data_tag trainval

The results will be saved in ./results/sdn_kitti_train/depth_maps_trainval/.

  • b. Using the model trained on KITTI training + validation set, and generating predictions on testing sets. You will use them when you want to submit your results to the leaderboard.

The results will be saved in ./results/sdn_kitti_trainval_set/depth_maps_trainval/.

# testing sets
python ./src/main_depth.py -c src/configs/kitti_w1.config \
    --resume ./results/sdn_kitti_trainval/checkpoint.pth.tar --datapath  path-to-KITTI/testing/ \
    --data_list=./split/test.txt --generate_depth_map --data_tag test

The results will be saved in ./results/sdn_kitti_trainval/depth_maps_test/.

4 Train 3D Detection with Pseudo-LiDAR

For training 3D object detection models, follow step 4 and after in the Pseudo-LiDAR_V2 repo https://github.com/mileyan/Pseudo_Lidar_V2.

Results

Results on the Stereo Disparity

Figure

3D Object Detection Results on KITTI leader board

Figure

Questions

Please feel free to email us if you have any questions.

Divyansh Garg [email protected] Yan Wang [email protected] Wei-Lun Chao [email protected]

Owner
Divyansh Garg
Making robots intelligent
Divyansh Garg
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022