GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

Overview

GPT-Code-Clippy (GPT-CC)

Please refer to our new GitHub Wiki which documents our efforts in detail in creating the open source version of GitHub Copilot



Courtesy of the awesome Aimee Trevett!

Introduction

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Datasets

The dataset used to train GPT-CC is obtained from SEART GitHub Search using the following criteria:

  • >10 GitHub stars
  • >2 commits
  • Must have a licence
  • Exclude forks
  • Size < 70708 bytes

These repositories are then combined with all of the GitHub repositories contain in The Pile.

The repositories are then filtered for duplicate files. Filtering is performed by regexing each file in each repository to obtain a list of "variables" (the tokens which only contain alphanumeric characters) and then filtering out any files which contain the same sequence of "variables. The deduplication script is available here.

The final dataset is available here. The dataset without the duplicates filtered out is also available here.

The datasheet discussing in more detail the construction, usage, and limitation of the dataset can be found here. We hope to get it officially into Huggingface's datasets library soon!

Models

The GPT-CC models are fine-tuned versions of GPT-2 and GPT-Neo.

The available models can be found here

The ones that perform relatively well (None improve on the standard GPT-Neo 125M model except for APPs specific models and only for the APPs task):

TODO: which is the recommended model?

Training

Training is done using the training scripts available here.

For fine-tuning GPTNeo-125M on CodeClippy dataset we used AdamW optimizer (beta1=0.9, beta2=0.95) with GPT3-like learning rate schedule (4k warmup steps from 0 to 5e-5 followed by 50k cosine decay steps to 5e-6), weight decay 0.1 and batch size 1024, sequence length 2048. The choice of relatively large batch size and low LR with long warmup are made to avoid agressive updates and preserve the knowledge contained in pretrained GPTNeo weights.

For fine-tuning GPTNe0-125M on APPS dataset we used AdamW optimizer (beta1=0.9, beta2=0.98) with linear learning rate schedule (800 warmup steps from 0 to peak LR followed by linear decay to 0, a range of value for peak LR was [1e-5; 1e-4]), weight decay 0.1 and batch size 256, sequence length 1024. We trained model for 5 epochs selecting best checkpoint judging by validation loss. The language modelling objective for APPS dataset is modified to backpropagate loss only for the tokens corresponding to code solution (refer to Hendrycks et al for more details).

For fine-tuning GPTNe0-1.3B on APPS dataset we used Adafactor optimizer with linear learning rate schedule (5k warmup steps from 0 to 2e-5 followed by linear decay to 0), weight decay 0.1 and batch size 24, sequence length 1024. The choice of hyperparameters for 1.3B model is in part determined by hardware limitations. We trained model for 5 epochs selecting best checkpoint judging by validation loss.

TODO: which is the recommended way to train GPT-CC?

Evaluation

The models are also evaluated on the APPS and HumanEval datasets.

Human Eval Results

Model [email protected] [email protected] [email protected] [email protected]
EleutherAI/gpt-neo 0.12% 0.24% 0.61% 1.22%
gpt-neo-125M-apps 0.06% 0.12% 0.30% 0.61%
dedup-filtered-no-resize-2048bs 0.00% 0.00% 0.00% 0.00%
1024-filtered 0.00% 0.00% 0.00% 0.00%
dedup-2048 0.00% 0.00% 0.00% 0.00%

APPS Eval Results

Coming soon...

Demo

A Visual Studio Code which uses the HuggingFace Inference API is available and can be found here.

We also have Huggingface's Space demo where you can specify and problem in the format of a programming competition question.

TODO: more information about this when complete.

Further Reading

For more information about GPT-CC, GitHub Copilot, etc, see:

TODO: add more further reading.

Acknowledgements

Special thanks to our contributors!!

This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022