Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Overview

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

billboard

Introduction

We propose a generalization of leaderboards, bidimensional leaderboards (Billboards), that simultaneously drives progress in language generation tasks and their evaluation. We accept two types of submissions:

  • Generator developers submit output text. A Billboard computes all metric scores.
  • Metric developers submit an executable program. A Billboard computes correlations with the human judgments, updates the ensemble metric, and measures how much it overrates machine over human generations.

Anonymous submissions are allowed!!

Submit

Submission guides and examples are available here.

Scoring Results

Scoring results for all past public submissions are available here. We have generator-name||metric-name.csv files from the Cartesian product between the generators and metrics: each contains instance-level scores.

Citations

Bidimesional Leaderboards

@misc{kasai2021billboard,
    title   = {Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand},
    author  = {Jungo Kasai and Keisuke Sakaguchi and Ronan Le Bras and Lavinia Dunagan and Jacob Morrison and Alexander R. Fabbri and Yejin Choi and Noah A. Smith},
    year    = {2021},
    url     = {https://arxiv.org/abs/2112.04139}, 
}

MSCOCO Captioning Evaluations and THumB 1.0 Protocol

@misc{kasai2021thumb,
    title   = {Transparent Human Evaluation for Image Captioning},
    author  = {Jungo Kasai and Keisuke Sakaguchi and Lavinia Dunagan and Jacob Morrison and Ronan Le Bras and Yejin Choi and Noah A. Smith},
    year    = {2021},
    url     = {https://arxiv.org/abs/2111.08940}, 
}

CNNDM Summarization Evaluations

@article{fabbri2021summeval,
    title   = {{SummEval}: Re-evaluating Summarization Evaluation},
    author  = {Fabbri, Alexander R and Kry{\'s}ci{\'n}ski, Wojciech and McCann, Bryan and Xiong, Caiming and Socher, Richard and Radev, Dragomir},
    journal = {TACL},
    year    = {2021},
    url     = {https://arxiv.org/abs/2007.12626},
}

WMT20 ZH-EN/EN-DE Machine Translation Evaluations

@misc{freitag2021experts,
      title={Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation}, 
      author={Markus Freitag and George Foster and David Grangier and Viresh Ratnakar and Qijun Tan and Wolfgang Macherey},
      year={2021},
      url={https://arxiv.org/abs/2104.14478},
}

AI2 Logo             UWNLP Logo             Salesforce Logo

Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022