Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Overview

Length-Adaptive Transformer

This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, please refer to our paper.

Our code is based on HuggingFace's ( 🤗 ) Transformers library. Currently, it only supports limited transformers (BERT and DistilBERT) and downstream tasks (SQuAD 1.1 and GLUE benchmark). We will extend it one-by-one to support other transformers and tasks. You can easily apply our method to any other use cases beforehand.

Getting Started

Requirements

  • Python 3
  • PyTorch
  • 🤗 Transformers
  • torchprofile (to measure FLOPs)

Dataset Preparation

(Standard) Finetuning pretrained transformer

For SQuAD 1.1, use run_squad.py slightly modified from 🤗 Transformers' question-answering example.

python run_squad.py \
  --model_type bert \
  --model_name_or_path bert-base-uncased \
  --do_train \
  --do_eval \
  --evaluate_during_training \
  --save_only_best \
  --do_lower_case \
  --data_dir $SQUAD_DIR \
  --train_file train-v1.1.json \
  --predict_file dev-v1.1.json \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 5e-5 \
  --num_train_epochs 3.0 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir $SQUAD_OUTPUT_DIR/standard

For GLUE, use run_glue.py slightly modified from 🤗 Transformers' text-classification example.

python run_glue.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --data_dir $GLUE_DIR/$TASK_NAME \
  --max_seq_length 128 \
  --per_device_train_batch_size 32 \
  --per_device_eval_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
  --output_dir $GLUE_OUTPUT_DIR/$TASK_NAME/standard

Training with LengthDrop

Starting from a checkpoint finetuned without Drop-and-Restore, continue finetuning for additional steps with Drop-and-Restore and LengthDrop.

python run_squad.py \
  --model_type bert \
  --model_name_or_path $SQUAD_OUTPUT_DIR/standard/checkpoint-best \
  --do_train \
  --do_eval \
  --evaluate_during_training \
  --save_only_best \
  --do_lower_case \
  --data_dir $SQUAD_DIR \
  --train_file train-v1.1.json \
  --predict_file dev-v1.1.json \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 5e-5 \
  --num_train_epochs 5.0 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir $SQUAD_OUTPUT_DIR/length_adaptive \
  --length_adaptive \
  --num_sandwich 2 \
  --length_drop_ratio_bound 0.2 \
  --layer_dropout_prob 0.2 \
python run_glue.py \
  --model_name_or_path $GLUE_OUTPUT_DIR/$TASK_NAME/standard/checkpoint-best \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --data_dir $GLUE_DIR/$TASK_NAME \
  --max_seq_length 128 \
  --per_device_train_batch_size 32 \
  --per_device_eval_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 5.0 \
  --output_dir $GLUE_OUTPUT_DIR/$TASK_NAME/length_adaptive
  --length_adaptive \
  --num_sandwich 2 \
  --length_drop_ratio_bound 0.2 \
  --layer_dropout_prob 0.2 \

Evolutionary Search of Length Configurations

After training with LengthDrop, perform an evolutionary search to find length configurations for anytime prediction.

python run_squad.py \
  --model_type bert \
  --model_name_or_path $SQUAD_OUTPUT_DIR/length_adaptive/checkpoint-best \
  --do_search \
  --do_lower_case \
  --data_dir $SQUAD_DIR \
  --train_file train-v1.1.json \
  --predict_file dev-v1.1.json \
  --per_gpu_eval_batch_size 32 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir $SQUAD_OUTPUT_DIR/evolutionary_search \
  --evo_iter 30 \
  --mutation_size 30 \
  --crossover_size 30 \
python run_glue.py \
  --model_name_or_path $GLUE_OUTPUT_DIR/$TASK_NAME/length_adaptive/checkpoint-best \
  --task_name $TASK_NAME \
  --do_search \
  --data_dir $GLUE_DIR/$TASK_NAME \
  --max_seq_length 128 \
  --per_device_eval_batch_size 32 \
  --output_dir $GLUE_OUTPUT_DIR/$TASK_NAME/evolutionary_search
  --evo_iter 30 \
  --mutation_size 30 \
  --crossover_size 30 \

License

Copyright 2020-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022