Boundary IoU API (Beta version)

Overview

Boundary IoU API (Beta version)

Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov

[arXiv] [Project] [BibTeX]

This API is an experimental version of Boundary IoU for 5 datasets:

To install Boundary IoU API, run:

pip install git+https://github.com/bowenc0221/boundary-iou-api.git

or

git clone [email protected]:bowenc0221/boundary-iou-api.git
cd boundary_iou_api
pip install -e .

Summary of usage

We provide two ways to use this api, you can either replace imports with our api or do offline evaluation.

Replacing imports

Our Boundary IoU API supports both evaluation with Mask IoU and Boundary IoU with the same interface as original ones. Thus, you only need to change the import, without worried about breaking your existing code.

  1. COCO instance segmentation
    replace

    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

    with

    from boundary_iou.coco_instance_api.coco import COCO
    from boundary_iou.coco_instance_api.cocoeval import COCOeval

    and set

    COCOeval(..., iouType="boundary")
  2. LVIS instance segmentation
    replace

    from lvis import LVISEval

    with

    from boundary_iou.lvis_instance_api.eval import LVISEval

    and set

    LVISEval(..., iou_type="boundary")
  3. Cityscapes instance segmentation
    replace

    import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as cityscapes_eval

    with

    import boundary_iou.cityscapes_instance_api.evalInstanceLevelSemanticLabeling as cityscapes_eval

    and set

    cityscapes_eval.args.iou_type = "boundary"
  4. COCO panoptic segmentation
    replace

    from panopticapi.evaluation import pq_compute

    with

    from boundary_iou.coco_panoptic_api.evaluation import pq_compute

    and set

    pq_compute(..., iou_type="boundary")
  5. Cityscapes panoptic segmentation
    replace

    from cityscapesscripts.evaluation.evalPanopticSemanticLabeling as evaluatePanoptic

    with

    from boundary_iou.cityscapes_panoptic_api.evalPanopticSemanticLabeling import evaluatePanoptic

    and set

    evaluatePanoptic(..., iou_type="boundary")

Offline evaluation

We also provide evaluation code that can evaluates your prediction files for each dataset.

  1. COCO instance segmentation

    python ./tools/coco_instance_evaluation.py \
        --gt-json-file COCO_GT_JSON \
        --dt-json-file COCO_DT_JSON \
        --iou-type boundary
  2. LVIS instance segmentation

    python ./tools/lvis_instance_evaluation.py \
        --gt-json-file LVIS_GT_JSON \
        --dt-json-file LVIS_DT_JSON \
        --iou-type boundary
  3. Cityscapes instance segmentation

    python ./tools/cityscapes_instance_evaluation.py \
        --gt_dir GT_DIR \
        --result_dir RESULT_DIR \
        --iou-type boundary
  4. COCO panoptic segmentation

    python ./tools/coco_panoptic_evaluation.py \
        --gt_json_file PANOPTIC_GT_JSON \
        --gt_folder PANOPTIC_GT_DIR \
        --pred_json_file PANOPTIC_PRED_JSON \
        --pred_folder PANOPTIC_PRED_DIR \
        --iou-type boundary
  5. Cityscapes panoptic segmentation

    python ./tools/cityscapes_panoptic_evaluation.py \
        --gt_json_file PANOPTIC_GT_JSON \
        --gt_folder PANOPTIC_GT_DIR \
        --pred_json_file PANOPTIC_PRED_JSON \
        --pred_folder PANOPTIC_PRED_DIR \
        --iou-type boundary

Citing Boundary IoU

If you find Boundary IoU helpful in your research or wish to refer to the referenced results, please use the following BibTeX entry.

@inproceedings{cheng2021boundary,
  title={Boundary {IoU}: Improving Object-Centric Image Segmentation Evaluation},
  author={Bowen Cheng and Ross Girshick and Piotr Doll{\'a}r and Alexander C. Berg and Alexander Kirillov},
  booktitle={CVPR},
  year={2021}
}

Contact

If you have any questions regarding this API, please contact us at bcheng9 AT illinois.edu

Owner
Bowen Cheng
Ph.D. at University of Illinois Urbana-Champaign
Bowen Cheng
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022