Easily pull telemetry data and create beautiful visualizations for analysis.

Overview

  This repository is a work in progress. Anything and everything is subject to change.

Porpo


Table of Contents


General Information

Porpo is a python application that utilizes the FastF1 package to easily pull specific data and generate visualizations for analysis.

Note: Python3 (v.3.8 or greater) is required.

Getting Started

Currently, there is not a simple way to run the program. However, getting it up and running is very easy, regardless of platform.

Install Dependencies:

pip3 install fastf1
pip3 install PySimpleGUI

There are 2 methods of execution:

/scripts/gui.py to begin using the application with a GUI. (Recommended)

/scripts/main.py to begin using the application in CLI.

Usage

Porpo allows you to individually set all the variables for evaluation.

You start by selecting the year the Grand Prix took place.

Then select the Grand Prix you want.

Then select the session from the Grand Prix.

Note: No GP has all sessions.

Next, select the driver you'd like to evaluate.

Now decide if you're going to evaluate the full session, or a specific lap, or easily select the fastest lap set by your chosen driver.

Check the FastF1 documentation to see everything that is available for each option.

The last step is to select which variables you want displayed on the axes (X and Y).

Be aware that although you can select any available data as either variable, some combinations may not perform as expected - or at all.

The plot will show up in a new window, and automatically save to your export directory when the graph is closed.

If you're unsure where your export directory is, the default is:

~/Documents/F1 Data Analysis/Export/

 

To change this directory, edit the save_path variable in scripts/gui.py

  save_path = '~/Documents/F1 Data Analysis/Export/'

Specific Lap

You can easily pull and visualize data for a single lap of a session.

VER_SpeedL_Bah

Max Verstappen speed on Lap 54 of the 2022 Bahrain GP. We can see he was losing power throughout the lap, up until the moment he completely lost power, and went into the pitlane.

Fastest Lap

By default, you can quickly do analysis of the fastest lap set by the selected driver during a session.

VER_SpeedF_Bah

Max Verstappen speed on the fastest lap he set in 2022 Bahrain GP. We can the difference between this lap and lap 54, when he retired.

Session

You can also quickly do an analysis of a driver's performance through an entire session.

VER_SpeedF_Bah

Max Verstappen laptime over the course of the Imola GP. We can see as the track began to dry, laptimes began to fall very quickly.
You might also like...
A Sklearn-like Framework for Hyperparameter Tuning and AutoML in Deep Learning projects. Finally have the right abstractions and design patterns to properly do AutoML. Let your pipeline steps have hyperparameter spaces. Enable checkpoints to cut duplicate calculations. Go from research to production environment easily. sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

A project which aims to protect your privacy using inexpensive hardware and easily modifiable software
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

Tracking Pipeline helps you to solve the tracking problem more easily
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Comments
  • UnboundLocalError: local variable 'self' referenced before assignment

    UnboundLocalError: local variable 'self' referenced before assignment

    Gets a error code. How can i look at the exported data? Only thing i find under the exported track is filenames that ends with .ff1pkl Example: cardata.ff1pkl, driverinfo.ff1pkl And the error code is: UnboundLocalError: local variable 'self' referenced before assignment

    opened by jeveli 12
  • Cache directory does not exist

    Cache directory does not exist

    This is what I'm getting.

    C:\Users\james\Desktop\GitHub\porpo\scripts>python gui.py Traceback (most recent call last): File "C:\Users\james\Desktop\GitHub\porpo\scripts\gui.py", line 9, in class Dirs(): File "C:\Users\james\Desktop\GitHub\porpo\scripts\gui.py", line 28, in Dirs fastf1.Cache.enable_cache(cache_path) File "C:\Users\james\AppData\Local\Programs\Python\Python310\lib\site-packages\fastf1\api.py", line 133, in enable_cache raise NotADirectoryError("Cache directory does not exist! Please check for typos or create it first.") NotADirectoryError: Cache directory does not exist! Please check for typos or create it first.

    C:\Users\james\Desktop\GitHub\porpo\scripts>python main.py Traceback (most recent call last): File "C:\Users\james\Desktop\GitHub\porpo\scripts\main.py", line 8, in fastf1.Cache.enable_cache('venv/F1/Cache/') File "C:\Users\james\AppData\Local\Programs\Python\Python310\lib\site-packages\fastf1\api.py", line 133, in enable_cache raise NotADirectoryError("Cache directory does not exist! Please check for typos or create it first.") NotADirectoryError: Cache directory does not exist! Please check for typos or create it first.

    opened by DrMurgz 1
Releases(v1.4.2-beta.stable)
  • v1.4.2-beta.stable(Jul 28, 2022)

  • v1.4.1-beta.stable(Jul 27, 2022)

  • v1.4.0-beta.stable(Jul 27, 2022)

    What's Changed

    • fixed cache error by @dawesry in https://github.com/dawesry/porpo/pull/26
    • fixed driver spec lap error by @dawesry in https://github.com/dawesry/porpo/pull/27
    • fixed export error by @dawesry in #29

    Full Changelog: https://github.com/dawesry/porpo/compare/v1.3.0-beta.stable...v1.4.0-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v2.3.0-alpha.nightly(May 24, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/23
    • fixed single driver full session error by @dtech-auto in https://github.com/dtech-auto/porpo/pull/24
    • stability update by @dtech-auto in https://github.com/dtech-auto/porpo/pull/25

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.2.2-beta.stable...v2.3.0-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v1.3.0-beta.stable(May 24, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/23
    • fixed single driver full session error by @dtech-auto in https://github.com/dtech-auto/porpo/pull/24
    • stability update by @dtech-auto in https://github.com/dtech-auto/porpo/pull/25

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.2.2-beta.stable...v1.3.0-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v2.2.1-alpha.nightly(May 23, 2022)

    What's Changed

    • Fixed single driver plot error by @dtech-auto

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.2.0-alpha.nightly...v2.2.1-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v2.2.0-alpha.nightly(May 23, 2022)

    What's Changed

    • drivercomp working - fastest only by @dtech-auto in https://github.com/dtech-auto/porpo/pull/19

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.1.2-alpha.nightly...v2.2.0-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v2.1.2-alpha.nightly(May 23, 2022)

    Added compare - non functioning

    What's Changed

    • update README.md by @dtech-auto in https://github.com/dtech-auto/porpo/pull/15
    • Update gui.py by @dtech-auto in https://github.com/dtech-auto/porpo/pull/18

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.0.2-beta.stable...v2.1.2-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v1.2.2-beta.stable(May 23, 2022)

    What's Changed

    GUI Updates

    • GUI Stability Updates by @dtech-auto in https://github.com/dtech-auto/porpo/pull/16

    New Features

    • NEW! Compare every driver, or a custom few, using the new Driver Compare feature! by @dtech-auto in https://github.com/dtech-auto/porpo/pull/21

    Bug Fixes

    • General bug fixes by @dtech-auto in https://github.com/dtech-auto/porpo/pull/22

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.2.1-alpha.nightly...v1.2.2-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v1.1.0-beta.stable(May 21, 2022)

    What's Changed

    • update README.md by @dtech-auto in https://github.com/dtech-auto/porpo/pull/15
    • update gui --STABLE by @dtech-auto in https://github.com/dtech-auto/porpo/pull/16

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.1.2-alpha.stable...v1.1.0-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v1.0.2-beta.stable(May 21, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/10
    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/13
    • fixed issue #11 by @dtech-auto in https://github.com/dtech-auto/porpo/pull/14

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.1.1-alpha.nightly...v1.1.2-alpha.stable

    Source code(tar.gz)
    Source code(zip)
  • v2.1.1-alpha.nightly(May 20, 2022)

    What's Changed

    • updated directory by @dtech-auto in https://github.com/dtech-auto/porpo/pull/6

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.1.0-alpha.nightly...v2.1.1-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v2.1.0-alpha.nightly(May 20, 2022)

  • v2.0.0-alpha.nightly(May 20, 2022)

  • v1.0.1-beta.stable(May 20, 2022)

  • v1.0.0-beta.stable(May 20, 2022)

  • v1.1.0-alpha.stable(May 19, 2022)

  • v1.1.0-alpha.nightly(May 19, 2022)

  • v1.0.0-alpha.nightly(May 18, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/5

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.0.0-alpha...v1.0.0-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v1.0.0-alpha(May 17, 2022)

    What's Changed

    • Directory cleaning by @dtech-auto in https://github.com/dtech-auto/F1DataAnalysis/pull/3
    • Nightly by @dtech-auto in https://github.com/dtech-auto/F1DataAnalysis/pull/4

    New Contributors

    • @dtech-auto made their first contribution in https://github.com/dtech-auto/F1DataAnalysis/pull/3

    Full Changelog: https://github.com/dtech-auto/F1DataAnalysis/commits/v1.0.0-alpha

    Source code(tar.gz)
    Source code(zip)
Owner
Ryan Dawes
Ryan Dawes
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022