Easily pull telemetry data and create beautiful visualizations for analysis.

Overview

  This repository is a work in progress. Anything and everything is subject to change.

Porpo


Table of Contents


General Information

Porpo is a python application that utilizes the FastF1 package to easily pull specific data and generate visualizations for analysis.

Note: Python3 (v.3.8 or greater) is required.

Getting Started

Currently, there is not a simple way to run the program. However, getting it up and running is very easy, regardless of platform.

Install Dependencies:

pip3 install fastf1
pip3 install PySimpleGUI

There are 2 methods of execution:

/scripts/gui.py to begin using the application with a GUI. (Recommended)

/scripts/main.py to begin using the application in CLI.

Usage

Porpo allows you to individually set all the variables for evaluation.

You start by selecting the year the Grand Prix took place.

Then select the Grand Prix you want.

Then select the session from the Grand Prix.

Note: No GP has all sessions.

Next, select the driver you'd like to evaluate.

Now decide if you're going to evaluate the full session, or a specific lap, or easily select the fastest lap set by your chosen driver.

Check the FastF1 documentation to see everything that is available for each option.

The last step is to select which variables you want displayed on the axes (X and Y).

Be aware that although you can select any available data as either variable, some combinations may not perform as expected - or at all.

The plot will show up in a new window, and automatically save to your export directory when the graph is closed.

If you're unsure where your export directory is, the default is:

~/Documents/F1 Data Analysis/Export/

 

To change this directory, edit the save_path variable in scripts/gui.py

  save_path = '~/Documents/F1 Data Analysis/Export/'

Specific Lap

You can easily pull and visualize data for a single lap of a session.

VER_SpeedL_Bah

Max Verstappen speed on Lap 54 of the 2022 Bahrain GP. We can see he was losing power throughout the lap, up until the moment he completely lost power, and went into the pitlane.

Fastest Lap

By default, you can quickly do analysis of the fastest lap set by the selected driver during a session.

VER_SpeedF_Bah

Max Verstappen speed on the fastest lap he set in 2022 Bahrain GP. We can the difference between this lap and lap 54, when he retired.

Session

You can also quickly do an analysis of a driver's performance through an entire session.

VER_SpeedF_Bah

Max Verstappen laptime over the course of the Imola GP. We can see as the track began to dry, laptimes began to fall very quickly.
You might also like...
A Sklearn-like Framework for Hyperparameter Tuning and AutoML in Deep Learning projects. Finally have the right abstractions and design patterns to properly do AutoML. Let your pipeline steps have hyperparameter spaces. Enable checkpoints to cut duplicate calculations. Go from research to production environment easily. sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

A project which aims to protect your privacy using inexpensive hardware and easily modifiable software
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

Tracking Pipeline helps you to solve the tracking problem more easily
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Comments
  • UnboundLocalError: local variable 'self' referenced before assignment

    UnboundLocalError: local variable 'self' referenced before assignment

    Gets a error code. How can i look at the exported data? Only thing i find under the exported track is filenames that ends with .ff1pkl Example: cardata.ff1pkl, driverinfo.ff1pkl And the error code is: UnboundLocalError: local variable 'self' referenced before assignment

    opened by jeveli 12
  • Cache directory does not exist

    Cache directory does not exist

    This is what I'm getting.

    C:\Users\james\Desktop\GitHub\porpo\scripts>python gui.py Traceback (most recent call last): File "C:\Users\james\Desktop\GitHub\porpo\scripts\gui.py", line 9, in class Dirs(): File "C:\Users\james\Desktop\GitHub\porpo\scripts\gui.py", line 28, in Dirs fastf1.Cache.enable_cache(cache_path) File "C:\Users\james\AppData\Local\Programs\Python\Python310\lib\site-packages\fastf1\api.py", line 133, in enable_cache raise NotADirectoryError("Cache directory does not exist! Please check for typos or create it first.") NotADirectoryError: Cache directory does not exist! Please check for typos or create it first.

    C:\Users\james\Desktop\GitHub\porpo\scripts>python main.py Traceback (most recent call last): File "C:\Users\james\Desktop\GitHub\porpo\scripts\main.py", line 8, in fastf1.Cache.enable_cache('venv/F1/Cache/') File "C:\Users\james\AppData\Local\Programs\Python\Python310\lib\site-packages\fastf1\api.py", line 133, in enable_cache raise NotADirectoryError("Cache directory does not exist! Please check for typos or create it first.") NotADirectoryError: Cache directory does not exist! Please check for typos or create it first.

    opened by DrMurgz 1
Releases(v1.4.2-beta.stable)
  • v1.4.2-beta.stable(Jul 28, 2022)

  • v1.4.1-beta.stable(Jul 27, 2022)

  • v1.4.0-beta.stable(Jul 27, 2022)

    What's Changed

    • fixed cache error by @dawesry in https://github.com/dawesry/porpo/pull/26
    • fixed driver spec lap error by @dawesry in https://github.com/dawesry/porpo/pull/27
    • fixed export error by @dawesry in #29

    Full Changelog: https://github.com/dawesry/porpo/compare/v1.3.0-beta.stable...v1.4.0-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v2.3.0-alpha.nightly(May 24, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/23
    • fixed single driver full session error by @dtech-auto in https://github.com/dtech-auto/porpo/pull/24
    • stability update by @dtech-auto in https://github.com/dtech-auto/porpo/pull/25

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.2.2-beta.stable...v2.3.0-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v1.3.0-beta.stable(May 24, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/23
    • fixed single driver full session error by @dtech-auto in https://github.com/dtech-auto/porpo/pull/24
    • stability update by @dtech-auto in https://github.com/dtech-auto/porpo/pull/25

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.2.2-beta.stable...v1.3.0-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v2.2.1-alpha.nightly(May 23, 2022)

    What's Changed

    • Fixed single driver plot error by @dtech-auto

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.2.0-alpha.nightly...v2.2.1-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v2.2.0-alpha.nightly(May 23, 2022)

    What's Changed

    • drivercomp working - fastest only by @dtech-auto in https://github.com/dtech-auto/porpo/pull/19

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.1.2-alpha.nightly...v2.2.0-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v2.1.2-alpha.nightly(May 23, 2022)

    Added compare - non functioning

    What's Changed

    • update README.md by @dtech-auto in https://github.com/dtech-auto/porpo/pull/15
    • Update gui.py by @dtech-auto in https://github.com/dtech-auto/porpo/pull/18

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.0.2-beta.stable...v2.1.2-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v1.2.2-beta.stable(May 23, 2022)

    What's Changed

    GUI Updates

    • GUI Stability Updates by @dtech-auto in https://github.com/dtech-auto/porpo/pull/16

    New Features

    • NEW! Compare every driver, or a custom few, using the new Driver Compare feature! by @dtech-auto in https://github.com/dtech-auto/porpo/pull/21

    Bug Fixes

    • General bug fixes by @dtech-auto in https://github.com/dtech-auto/porpo/pull/22

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.2.1-alpha.nightly...v1.2.2-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v1.1.0-beta.stable(May 21, 2022)

    What's Changed

    • update README.md by @dtech-auto in https://github.com/dtech-auto/porpo/pull/15
    • update gui --STABLE by @dtech-auto in https://github.com/dtech-auto/porpo/pull/16

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.1.2-alpha.stable...v1.1.0-beta.stable

    Source code(tar.gz)
    Source code(zip)
  • v1.0.2-beta.stable(May 21, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/10
    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/13
    • fixed issue #11 by @dtech-auto in https://github.com/dtech-auto/porpo/pull/14

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.1.1-alpha.nightly...v1.1.2-alpha.stable

    Source code(tar.gz)
    Source code(zip)
  • v2.1.1-alpha.nightly(May 20, 2022)

    What's Changed

    • updated directory by @dtech-auto in https://github.com/dtech-auto/porpo/pull/6

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v2.1.0-alpha.nightly...v2.1.1-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v2.1.0-alpha.nightly(May 20, 2022)

  • v2.0.0-alpha.nightly(May 20, 2022)

  • v1.0.1-beta.stable(May 20, 2022)

  • v1.0.0-beta.stable(May 20, 2022)

  • v1.1.0-alpha.stable(May 19, 2022)

  • v1.1.0-alpha.nightly(May 19, 2022)

  • v1.0.0-alpha.nightly(May 18, 2022)

    What's Changed

    • Nightly by @dtech-auto in https://github.com/dtech-auto/porpo/pull/5

    Full Changelog: https://github.com/dtech-auto/porpo/compare/v1.0.0-alpha...v1.0.0-alpha.nightly

    Source code(tar.gz)
    Source code(zip)
  • v1.0.0-alpha(May 17, 2022)

    What's Changed

    • Directory cleaning by @dtech-auto in https://github.com/dtech-auto/F1DataAnalysis/pull/3
    • Nightly by @dtech-auto in https://github.com/dtech-auto/F1DataAnalysis/pull/4

    New Contributors

    • @dtech-auto made their first contribution in https://github.com/dtech-auto/F1DataAnalysis/pull/3

    Full Changelog: https://github.com/dtech-auto/F1DataAnalysis/commits/v1.0.0-alpha

    Source code(tar.gz)
    Source code(zip)
Owner
Ryan Dawes
Ryan Dawes
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023