Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

Overview

torchtyping

Type annotations for a tensor's shape, dtype, names, ...

Turn this:

def batch_outer_product(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    # x has shape (batch, x_channels)
    # y has shape (batch, y_channels)
    # return has shape (batch, x_channels, y_channels)

    return x.unsqueeze(-1) * y.unsqueeze(-2)

into this:

def batch_outer_product(x:   TensorType["batch", "x_channels"],
                        y:   TensorType["batch", "y_channels"]
                        ) -> TensorType["batch", "x_channels", "y_channels"]:

    return x.unsqueeze(-1) * y.unsqueeze(-2)

with programmatic checking that the shape (dtype, ...) specification is met.

Bye-bye bugs! Say hello to enforced, clear documentation of your code.

If (like me) you find yourself littering your code with comments like # x has shape (batch, hidden_state) or statements like assert x.shape == y.shape , just to keep track of what shape everything is, then this is for you.


Installation

pip install torchtyping

Requires Python 3.7+ and PyTorch 1.7.0+.

Usage

torchtyping allows for type annotating:

  • shape: size, number of dimensions;
  • dtype (float, integer, etc.);
  • layout (dense, sparse);
  • names of dimensions as per named tensors;
  • arbitrary number of batch dimensions with ...;
  • ...plus anything else you like, as torchtyping is highly extensible.

If typeguard is (optionally) installed then at runtime the types can be checked to ensure that the tensors really are of the advertised shape, dtype, etc.

# EXAMPLE

from torch import rand
from torchtyping import TensorType, patch_typeguard
from typeguard import typechecked

patch_typeguard()  # use before @typechecked

@typechecked
def func(x: TensorType["batch"],
         y: TensorType["batch"]) -> TensorType["batch"]:
    return x + y

func(rand(3), rand(3))  # works
func(rand(3), rand(1))
# TypeError: Dimension 'batch' of inconsistent size. Got both 1 and 3.

typeguard also has an import hook that can be used to automatically test an entire module, without needing to manually add @typeguard.typechecked decorators.

If you're not using typeguard then torchtyping.patch_typeguard() can be omitted altogether, and torchtyping just used for documentation purposes. If you're not already using typeguard for your regular Python programming, then strongly consider using it. It's a great way to squash bugs. Both typeguard and torchtyping also integrate with pytest, so if you're concerned about any performance penalty then they can be enabled during tests only.

API

torchtyping.TensorType[shape, dtype, layout, details]

The core of the library.

Each of shape, dtype, layout, details are optional.

  • The shape argument can be any of:
    • An int: the dimension must be of exactly this size. If it is -1 then any size is allowed.
    • A str: the size of the dimension passed at runtime will be bound to this name, and all tensors checked that the sizes are consistent.
    • A ...: An arbitrary number of dimensions of any sizes.
    • A str: int pair (technically it's a slice), combining both str and int behaviour. (Just a str on its own is equivalent to str: -1.)
    • A str: ... pair, in which case the multiple dimensions corresponding to ... will be bound to the name specified by str, and again checked for consistency between arguments.
    • None, which when used in conjunction with is_named below, indicates a dimension that must not have a name in the sense of named tensors.
    • A None: int pair, combining both None and int behaviour. (Just a None on its own is equivalent to None: -1.)
    • A typing.Any: Any size is allowed for this dimension (equivalent to -1).
    • Any tuple of the above. For example.TensorType["batch": ..., "length": 10, "channels", -1]. If you just want to specify the number of dimensions then use for example TensorType[-1, -1, -1] for a three-dimensional tensor.
  • The dtype argument can be any of:
    • torch.float32, torch.float64 etc.
    • int, bool, float, which are converted to their corresponding PyTorch types. float is specifically interpreted as torch.get_default_dtype(), which is usually float32.
  • The layout argument can be either torch.strided or torch.sparse_coo, for dense and sparse tensors respectively.
  • The details argument offers a way to pass an arbitrary number of additional flags that customise and extend torchtyping. Two flags are built-in by default. torchtyping.is_named causes the names of tensor dimensions to be checked, and torchtyping.is_float can be used to check that arbitrary floating point types are passed in. (Rather than just a specific one as with e.g. TensorType[torch.float32].) For discussion on how to customise torchtyping with your own details, see the further documentation.

Check multiple things at once by just putting them all together inside a single []. For example TensorType["batch": ..., "length", "channels", float, is_named].

torchtyping.patch_typeguard()

torchtyping integrates with typeguard to perform runtime type checking. torchtyping.patch_typeguard() should be called at the global level, and will patch typeguard to check TensorTypes.

This function is safe to run multiple times. (It does nothing after the first run).

  • If using @typeguard.typechecked, then torchtyping.patch_typeguard() should be called any time before using @typeguard.typechecked. For example you could call it at the start of each file using torchtyping.
  • If using typeguard.importhook.install_import_hook, then torchtyping.patch_typeguard() should be called any time before defining the functions you want checked. For example you could call torchtyping.patch_typeguard() just once, at the same time as the typeguard import hook. (The order of the hook and the patch doesn't matter.)
  • If you're not using typeguard then torchtyping.patch_typeguard() can be omitted altogether, and torchtyping just used for documentation purposes.
pytest --torchtyping-patch-typeguard

torchtyping offers a pytest plugin to automatically run torchtyping.patch_typeguard() before your tests. pytest will automatically discover the plugin, you just need to pass the --torchtyping-patch-typeguard flag to enable it. Packages can then be passed to typeguard as normal, either by using @typeguard.typechecked, typeguard's import hook, or the pytest flag --typeguard-packages="your_package_here".

Further documentation

See the further documentation for:

  • FAQ;
    • Including flake8 and mypy compatibility;
  • How to write custom extensions to torchtyping;
  • Resources and links to other libraries and materials on this topic;
  • More examples.
Owner
Patrick Kidger
Maths+ML PhD student at Oxford. Neural ODEs+SDEs+CDEs, time series, rough analysis. (Also ice skating, martial arts and scuba diving!)
Patrick Kidger
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022