Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

Overview

torchtyping

Type annotations for a tensor's shape, dtype, names, ...

Turn this:

def batch_outer_product(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    # x has shape (batch, x_channels)
    # y has shape (batch, y_channels)
    # return has shape (batch, x_channels, y_channels)

    return x.unsqueeze(-1) * y.unsqueeze(-2)

into this:

def batch_outer_product(x:   TensorType["batch", "x_channels"],
                        y:   TensorType["batch", "y_channels"]
                        ) -> TensorType["batch", "x_channels", "y_channels"]:

    return x.unsqueeze(-1) * y.unsqueeze(-2)

with programmatic checking that the shape (dtype, ...) specification is met.

Bye-bye bugs! Say hello to enforced, clear documentation of your code.

If (like me) you find yourself littering your code with comments like # x has shape (batch, hidden_state) or statements like assert x.shape == y.shape , just to keep track of what shape everything is, then this is for you.


Installation

pip install torchtyping

Requires Python 3.7+ and PyTorch 1.7.0+.

Usage

torchtyping allows for type annotating:

  • shape: size, number of dimensions;
  • dtype (float, integer, etc.);
  • layout (dense, sparse);
  • names of dimensions as per named tensors;
  • arbitrary number of batch dimensions with ...;
  • ...plus anything else you like, as torchtyping is highly extensible.

If typeguard is (optionally) installed then at runtime the types can be checked to ensure that the tensors really are of the advertised shape, dtype, etc.

# EXAMPLE

from torch import rand
from torchtyping import TensorType, patch_typeguard
from typeguard import typechecked

patch_typeguard()  # use before @typechecked

@typechecked
def func(x: TensorType["batch"],
         y: TensorType["batch"]) -> TensorType["batch"]:
    return x + y

func(rand(3), rand(3))  # works
func(rand(3), rand(1))
# TypeError: Dimension 'batch' of inconsistent size. Got both 1 and 3.

typeguard also has an import hook that can be used to automatically test an entire module, without needing to manually add @typeguard.typechecked decorators.

If you're not using typeguard then torchtyping.patch_typeguard() can be omitted altogether, and torchtyping just used for documentation purposes. If you're not already using typeguard for your regular Python programming, then strongly consider using it. It's a great way to squash bugs. Both typeguard and torchtyping also integrate with pytest, so if you're concerned about any performance penalty then they can be enabled during tests only.

API

torchtyping.TensorType[shape, dtype, layout, details]

The core of the library.

Each of shape, dtype, layout, details are optional.

  • The shape argument can be any of:
    • An int: the dimension must be of exactly this size. If it is -1 then any size is allowed.
    • A str: the size of the dimension passed at runtime will be bound to this name, and all tensors checked that the sizes are consistent.
    • A ...: An arbitrary number of dimensions of any sizes.
    • A str: int pair (technically it's a slice), combining both str and int behaviour. (Just a str on its own is equivalent to str: -1.)
    • A str: ... pair, in which case the multiple dimensions corresponding to ... will be bound to the name specified by str, and again checked for consistency between arguments.
    • None, which when used in conjunction with is_named below, indicates a dimension that must not have a name in the sense of named tensors.
    • A None: int pair, combining both None and int behaviour. (Just a None on its own is equivalent to None: -1.)
    • A typing.Any: Any size is allowed for this dimension (equivalent to -1).
    • Any tuple of the above. For example.TensorType["batch": ..., "length": 10, "channels", -1]. If you just want to specify the number of dimensions then use for example TensorType[-1, -1, -1] for a three-dimensional tensor.
  • The dtype argument can be any of:
    • torch.float32, torch.float64 etc.
    • int, bool, float, which are converted to their corresponding PyTorch types. float is specifically interpreted as torch.get_default_dtype(), which is usually float32.
  • The layout argument can be either torch.strided or torch.sparse_coo, for dense and sparse tensors respectively.
  • The details argument offers a way to pass an arbitrary number of additional flags that customise and extend torchtyping. Two flags are built-in by default. torchtyping.is_named causes the names of tensor dimensions to be checked, and torchtyping.is_float can be used to check that arbitrary floating point types are passed in. (Rather than just a specific one as with e.g. TensorType[torch.float32].) For discussion on how to customise torchtyping with your own details, see the further documentation.

Check multiple things at once by just putting them all together inside a single []. For example TensorType["batch": ..., "length", "channels", float, is_named].

torchtyping.patch_typeguard()

torchtyping integrates with typeguard to perform runtime type checking. torchtyping.patch_typeguard() should be called at the global level, and will patch typeguard to check TensorTypes.

This function is safe to run multiple times. (It does nothing after the first run).

  • If using @typeguard.typechecked, then torchtyping.patch_typeguard() should be called any time before using @typeguard.typechecked. For example you could call it at the start of each file using torchtyping.
  • If using typeguard.importhook.install_import_hook, then torchtyping.patch_typeguard() should be called any time before defining the functions you want checked. For example you could call torchtyping.patch_typeguard() just once, at the same time as the typeguard import hook. (The order of the hook and the patch doesn't matter.)
  • If you're not using typeguard then torchtyping.patch_typeguard() can be omitted altogether, and torchtyping just used for documentation purposes.
pytest --torchtyping-patch-typeguard

torchtyping offers a pytest plugin to automatically run torchtyping.patch_typeguard() before your tests. pytest will automatically discover the plugin, you just need to pass the --torchtyping-patch-typeguard flag to enable it. Packages can then be passed to typeguard as normal, either by using @typeguard.typechecked, typeguard's import hook, or the pytest flag --typeguard-packages="your_package_here".

Further documentation

See the further documentation for:

  • FAQ;
    • Including flake8 and mypy compatibility;
  • How to write custom extensions to torchtyping;
  • Resources and links to other libraries and materials on this topic;
  • More examples.
Owner
Patrick Kidger
Maths+ML PhD student at Oxford. Neural ODEs+SDEs+CDEs, time series, rough analysis. (Also ice skating, martial arts and scuba diving!)
Patrick Kidger
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

CsordÔs Róbert 57 Nov 21, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022