Vector Quantized Diffusion Model for Text-to-Image Synthesis

Overview

Vector Quantized Diffusion Model for Text-to-Image Synthesis

Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I provide the same code here.

Overview

This is the official repo for the paper: Vector Quantized Diffusion Model for Text-to-Image Synthesis.

VQ-Diffusion is based on a VQ-VAE whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). It produces significantly better text-to-image generation results when compared with Autoregressive models with similar numbers of parameters. Compared with previous GAN-based methods, VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin.

Framework

Requirements

We suggest to use the docker. Also, you may run:

bash install_req.sh

Data Preparing

Microsoft COCO

│MSCOCO_Caption/
├──annotations/
│  ├── captions_train2014.json
│  ├── captions_val2014.json
├──train2014/
│  ├── train2014/
│  │   ├── COCO_train2014_000000000009.jpg
│  │   ├── ......
├──val2014/
│  ├── val2014/
│  │   ├── COCO_val2014_000000000042.jpg
│  │   ├── ......

CUB-200

│CUB-200/
├──images/
│  ├── 001.Black_footed_Albatross/
│  ├── 002.Laysan_Albatross
│  ├── ......
├──text/
│  ├── text/
│  │   ├── 001.Black_footed_Albatross/
│  │   ├── 002.Laysan_Albatross
│  │   ├── ......
├──train/
│  ├── filenames.pickle
├──test/
│  ├── filenames.pickle

ImageNet

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Pretrained Model

We release four text-to-image pretrained model, trained on Conceptual Caption, MSCOCO, CUB200, and LAION-human datasets. Also, we release the ImageNet pretrained model, and provide the CLIP pretrained model for convenient. These should be put under OUTPUT/pretrained_model/ . These pretrained model file may be large because they are training checkpoints, which contains gradient information, optimizer information, ema model and others.

Besides, we provide the VQVAE models on FFHQ, OpenImages, and imagenet datasets, these model are from Taming Transformer, we provide them here for convenient. Please put them under OUTPUT/pretrained_model/taming_dvae/ .

Inference

To generate image from given text:

from inference_VQ_Diffusion import VQ_Diffusion
VQ_Diffusion_model = VQ_Diffusion(config='OUTPUT/pretrained_model/config_text.yaml', path='OUTPUT/pretrained_model/human_pretrained.pth')
VQ_Diffusion_model.inference_generate_sample_with_condition("a beautiful smiling woman",truncation_rate=0.85, save_root="RESULT",batch_size=4)
VQ_Diffusion_model.inference_generate_sample_with_condition("a woman in yellow dress",truncation_rate=0.85, save_root="RESULT",batch_size=4,fast=2) # for fast inference

You may change human_pretrained.pth to other pretrained model to test different text.

To generate image from given ImageNet class label:

from inference_VQ_Diffusion import VQ_Diffusion
VQ_Diffusion_model = VQ_Diffusion(config='OUTPUT/pretrained_model/config_imagenet.yaml', path='OUTPUT/pretrained_model/imagenet_pretrained.pth')
VQ_Diffusion_model.inference_generate_sample_with_class(407,truncation_rate=0.86, save_root="RESULT",batch_size=4)

Training

First, change the data_root to correct path in configs/coco.yaml or other configs.

Train Text2Image generation on MSCOCO dataset:

python running_command/run_train_coco.py

Train Text2Image generation on CUB200 dataset:

python running_command/run_train_cub.py

Train conditional generation on ImageNet dataset:

python running_command/run_train_imagenet.py

Train unconditional generation on FFHQ dataset:

python running_command/run_train_ffhq.py

Cite VQ-Diffusion

if you find our code helpful for your research, please consider citing:

@article{gu2021vector,
  title={Vector Quantized Diffusion Model for Text-to-Image Synthesis},
  author={Gu, Shuyang and Chen, Dong and Bao, Jianmin and Wen, Fang and Zhang, Bo and Chen, Dongdong and Yuan, Lu and Guo, Baining},
  journal={arXiv preprint arXiv:2111.14822},
  year={2021}
}

Acknowledgement

Thanks to everyone who makes their code and models available. In particular,

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree.

Microsoft Open Source Code of Conduct

Contact Information

For help or issues using VQ-Diffusion, please submit a GitHub issue. For other communications related to VQ-Diffusion, please contact Shuyang Gu ([email protected]) or Dong Chen ([email protected]).

Owner
Shuyang Gu
Shuyang Gu
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022