Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Overview

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Introduction

Graph Neural Networks (GNNs) have demonstrated superior performance in node classification or regression tasks, and have emerged as the state of the art in several applications. However, (inductive) GNNs require the edge connectivity structure of nodes to be known beforehand to work well. This is often not the case in several practical applications where the node degrees have power-law distributions, and nodes with a few connections might have noisy edges. An extreme case is the strict cold start (SCS) problem, where there is no neighborhood information available, forcing prediction models to rely completely on node features only. To study the viability of using inductive GNNs to solve the SCS problem, we introduce feature-contribution ratio (FCR), a metric to quantify the contribution of a node's features and that of its neighborhood in predicting node labels, and use this new metric as a model selection reward. We then propose Cold Brew, a new method that generalizes GNNs better in the SCS setting compared to pointwise and graph-based models, via a distillation approach. We show experimentally how FCR allows us to disentangle the contributions of various components of graph datasets, and demonstrate the superior performance of Cold Brew on several public benchmarks

Motivation

Long tail distribution is ubiquitously existed in large scale graph mining tasks. In some applications, some cold start nodes have too few or no neighborhood in the graph, which make graph based methods sub-optimal due to insufficient high quality edges to perform message passing.

gnns

gnns

Method

We improve teacher GNN with Structural Embedding, and propose student MLP model with latent neighborhood discovery step. We also propose a metric called FCR to judge the difficulty in cold start generalization.

gnns

coldbrew

Installation Guide

The following commands are used for installing key dependencies; other can be directly installed via pip or conda. A full redundant dependency list is in requirements.txt

pip install dgl
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-geometric

Training Guide

In options/base_options.py, a full list of useable args is present, with default arguments and candidates initialized.

Comparing between traditional GCN (optimized with Initial/Jumping/Dense/PairNorm/NodeNorm/GroupNorm/Dropouts) and Cold Brew's GNN (optimized with Structural Embedding)

Train optimized traditional GNN:

python main.py --dataset='Cora' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 84.15

python main.py --dataset='Citeseer' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 71.00

python main.py --dataset='Pubmed' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 78.2

Training Cold Brew's Teacher GNN:

python main.py --dataset='Cora' --train_which='TeacherGNN' --whetherHasSE='100' --se_reg=32 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 85.10

python main.py --dataset='Citeseer' --train_which='TeacherGNN' --whetherHasSE='100' --se_reg=0.5 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 71.40

python main.py --dataset='Pubmed' --train_which='TeacherGNN' --whetherHasSE='111' --se_reg=0.5 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 78.2

Comparing between MLP models:

Training naive MLP:

python main.py --dataset='Cora' --train_which='StudentBaseMLP' Result on isolation split: 63.92

Training GraphMLP:

python main.py --dataset='Cora' --train_which='GraphMLP' Result on isolation split: 68.63

Training Cold Brew's MLP:

python main.py --dataset='Cora' --train_which="SEMLP" --SEMLP_topK_2_replace=3 --SEMLP_part1_arch="2layer" --dropout_MLP=0.5 --studentMLP__opt_lr='torch.optim.Adam&0.005' Result on isolation split: 69.57

Hyperparameter meanings

--whetherHasSE: whether cold brew's TeacherGNN has structural embedding. The first ‘1’ means structural embedding exist in first layer; second ‘1’ means structural embedding exist in every middle layers; third ‘1’ means last layer.

--se_reg: regularization coefficient for cold brew teacher model's structural embedding.

--SEMLP_topK_2_replace: the number of top K best virtual neighbor nodes.

--manual_assign_GPU: set the GPU ID to train on. default=-9999, which means to dynamically choose GPU with most remaining memory.

Adaptation Guide

How to leverage this repo to train on other datasets:

In trainer.py, put any new graph dataset (node classification) under load_data() and return it.

what to load: return a dataset, which is a namespace, called 'data', data.x: 2D tensor, on cpu; shape = [N_nodes, dim_feature]. data.y: 1D tensor, on cpu; shape = [N_nodes]; values are integers, indicating the class of nodes. data.edge_index: tensor: [2, N_edge], cpu; edges contain self loop. data.train_mask: bool tensor, shape = [N_nodes], indicating the training node set. Template class for the 'data':

class MyDataset(torch_geometric.data.data.Data):
    def __init__(self):
        super().__init__()

Citation

comming soon.
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022