Alleviating Over-segmentation Errors by Detecting Action Boundaries

Overview

Alleviating Over-segmentation Errors by Detecting Action Boundaries

Forked from ASRF offical code. This repo is the a implementation of replacing original MSTCN backbone with ASFormer.

Dataset

GTEA, 50Salads, Breakfast

You can download features and G.T. of these datasets from this repository.
Or you can extract their features by yourself using this repository

Requirements

  • Python >= 3.7
  • pytorch => 1.0
  • torchvision
  • pandas
  • numpy
  • Pillow
  • PyYAML

You can download packages using requirements.txt.

pip install -r requirements.txt

Directory Structure

root ── csv/
      ├─ libs/
      ├─ imgs/
      ├─ result/
      ├─ utils/
      ├─ dataset ─── 50salads/...
      │           ├─ breakfast/...
      │           └─ gtea ─── features/
      │                    ├─ groundTruth/
      │                    ├─ splits/
      │                    └─ mapping.txt
      ├.gitignore
      ├ README.md
      ├ requirements.txt
      ├ save_pred.py
      ├ train.py
      └ evaluate.py
  • csv directory contains csv files which are necessary for training and testing.
  • An image in imgs is one from PascalVOC. This is used for an color palette to visualize outputs.
  • Experimental results are stored in results directory.
  • Scripts in utils are directly irrelevant with train.py and evaluate.py but necessary for converting labels, generating configurations, visualization and so on.
  • Scripts in libs are necessary for training and evaluation. e.g.) models, loss functions, dataset class and so on.
  • The datasets downloaded from this repository are stored in dataset. You can put them in another directory, but need to specify the path in configuration files.
  • train.py is a script for training networks.
  • eval.py is a script for evaluation.
  • save_pred.py is for saving predictions from models.

How to use

Please also check scripts/experiment.sh, which runs all the following experimental codes.

  1. First of all, please download features and G.T. of these datasets from this repository.

  2. Features and groundTruth labels need to be converted to numpy array. This repository does not provide boundary groundtruth labels, so you have to generate them, too. Please run the following command. [DATASET_DIR] is the path to your dataset directory.

    python utils/generate_gt_array.py --dataset_dir [DATASET_DIR]
    python utils/generate_boundary_array.py --dataset_dir [DATASET_DIR]
  3. In this implementation, csv files are used for keeping information of training or test data. You can run the below command to generate csv files, but we suggest to use the csv files provided in the repo.

    python utils/make_csv_files.py --dataset_dir [DATASET_DIR]
  4. You can automatically generate experiment configuration files by running the following command. This command generates directories and configuration files in root_dir. However, we suggest to use the config files provided in the repo.

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5
    python utils/make_config.py --root_dir ./result/gtea --dataset gtea --split 1 2 3 4
    python utils/make_config.py --root_dir ./result/breakfast --dataset breakfast --split 1 2 3 4

    If you want to add other configurations, please add command-line options like:

    python utils/make_config.py --root_dir ./result/50salads --dataset 50salads --split 1 2 3 4 5 --learning_rate 0.1 0.01 0.001 0.0001

    Please see libs/config.py about configurations.

  5. You can train and evaluate models specifying a configuration file generated in the above process like, we train 80 epochs for 50salads dataset in the config.yaml.

    python train.py ./result/50salads/dataset-50salads_split-1/config.yaml
    python evaluate.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  6. You can also save model predictions as numpy array by running:

    python save_pred.py ./result/50salads/dataset-50salads_split-1/config.yaml test
  7. If you want to visualize the saved model predictions, please run:

    python utils/convert_arr2img.py ./result/50salads/dataset-50salads_split1/predictions

License

This repository is released under the MIT License.

Citation

@inproceedings{chinayi_ASformer,
author={Fangqiu Yi and Hongyu Wen and Tingting Jiang}, booktitle={The British Machine Vision Conference (BMVC)},
title={ASFormer: Transformer for Action Segmentation}, year={2021},
}

Reference

  • Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, Hirokatsu Kataoka, "Alleviating Over-segmentation Errors by Detecting Action Boundaries" in WACV 2021.
  • Colin Lea et al., "Temporal Convolutional Networks for Action Segmentation and Detection", in CVPR2017 (paper)
  • Yazan Abu Farha et al., "MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation", in CVPR2019 (paper, code)
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022