Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Overview

Beyond the Spectrum

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keuper and Mario Fritz.

Pretrained Models

We release the model trained on CelebA-HQ dataset with image resolution 1024x1024. For the super resolution, we use 25,000 real images from CelebA-HQ to train it. For the detectors, we use 25,000 real images and 25,000 fake images to train a binary classifier based on ResNet-50.

We release some models as examples to show how to apply our models based on pixel-level or stage5-level reconstruction errors to detect deepfakes. Download link: https://drive.google.com/file/d/1FeIgABjBpjtnXT-Hl6p5a5lpZxINzXwv/view?usp=sharing.

If you have further questions regarding the trained models, please feel free to contact.

Train

  1. Train the super resolution model.

We use Residual Dense Network (RDN) in our work. The following script shows the hyperparameters used in our experiments. To be noticed, we only use 4 images to show how to run the script. For simplicity, you can download the pretrained model from the above link.

bash script/train_super_resolution_celeba.sh [GPU_ID]
  1. Train the detectors.

After obtaining the super resolution, we use pixel-level or stage5-level L1 based recontruction error to train a classifier. The following scripts use 10 training example to show how to train a classifier with a given super resolution model. You may need to adjust the learning rate and number of training epochs in your case.

bash script/train_pixel_pggan.sh [GPU_ID]
  1. Finetune with auxiliary tasks

In order to improve the robustness of our detectors, we introduce auxiliary tasks (i.e., colorization or denoising) into the super resolution model training and finetune the whole model end-to-end. The following scripts show how to train a model with those tasks.

bash script/train_pixel_pggan_colorization.sh [GPU_ID]
bash script/train_stage5_stylegan_denoising.sh [GPU_ID]

Test

Please download our models. You can use pixel-level or stage5-level to perform deepfakes detection.

bash script/test_pixel_celeba.sh [GPU_ID]
bash script/test_stage5_celeba.sh [GPU_ID]

Citation

If our work is useful for you, please cite our paper:

@inproceedings{yang_ijcai21,
  title={Beyond the Spectrum: Detecting Deepfakes via Re-synthesis},
  author={Yang He and Ning Yu and Margret Keuper and Mario Fritz},
  booktitle={30th International Joint Conference on Artificial Intelligence (IJCAI)},
  year={2021}
}

Contact: Yang He ([email protected])

Last update: 08-22-2021

Owner
Yang He
Applied Scientist in Amazon Last Mile PostDoc in CISPA Helmholtz Center for Information Security / PhD in Max Planck Institute for Informatics
Yang He
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022