Accurate identification of bacteriophages from metagenomic data using Transformer

Related tags

Deep LearningPhaMer
Overview

PhaMer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocabulary to convert DNA sequences into sentences.

Overview

The main function of PhaMer is to identify phage-like contigs from metagenomic data. The input of the program should be fasta files and the output will be a csv file showing the predictions. Since it is a Deep learning model, if you have GPU units on your PC, we recommand you to use them to save your time.

If you have any trouble installing or using PhaMer, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

If you want to use the gpu to accelerate the program:

  • cuda

  • Pytorch-gpu

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch

  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer

An easiler way to install

Note: we suggest you to install all the package using conda (both miniconda and Anaconda are ok).

After cloning this respository, you can use anaconda to install the PhaMer.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f PhaMer.yaml -n phamer

Prepare the database and environment

Due to the limited size of the GitHub, we zip the database. Before using PhaMer, you need to unpack them using the following commands.

  1. When you use PhaMer at the first time
cd PhaMer/
conda env create -f PhaMer.yaml -n phamer
conda activate phamer
cd database/
bzip2 -d database.fa.bz2
git lfs install
rm transformer.pth
git checkout .
cd ..

Note: Because the parameter is larger than 100M, please make sure you have installed git-lfs to downloaded it from GitHub

  1. If the example can be run without any but bugs, you only need to activate your 'phamer' environment before using PhaMer.
conda activate phamer

Usage

python preprocessing.py [--contigs INPUT_FA] [--len MINIMUM_LEN]
python PhaMer.py [--out OUTPUT_CSV] [--reject THRESHOLD]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 3000)
  --out OUTPUT_CSV
                        The output csv file (prediction)
  --reject THRESHOLD
                        Threshold to reject prophage. The higher the value, the more prophage will be rejected (default 0.3)

Example

Prediction on the example file:

python preprocessing.py --contigs test_contigs.fa
python PhaMer.py --out example_prediction.csv

The prediction will be written in example_prediction.csv. The CSV file has three columns: contigs names, prediction, and prediction score.

References

The paper is submitted to the ISMB 2022.

The arXiv version can be found via: Accurate identification of bacteriophages from metagenomic data using Transformer

Contact

If you have any questions, please email us: [email protected]

Comments
  • issues collections from schackartk (solved)

    issues collections from schackartk (solved)

    Hi! Thank you for publishing your code publicly.

    I am a researcher who works with many tools that identify phage in metagenomes. However, I like to be confident in the implementation of the concepts. I noticed that your repository does not have any formal testing. Without tests, I am always skeptical about implementing a tool in my own work because I cannot be sure it is working as described.

    Would your team be interested in adding tests to the code (e.g. using pytest)? If I, or another developer, were to create a pull request that implemented testing, would your team consider accepting such a request?

    Also, it is a small thing, but I noticed that your code is not formatted in any community-accepted way. Would you consider accepting a pull request that has passed the code through a linter such as yapf or black? I usually add linting as part of my test suites.

    opened by schackartk 12
  • Rename preprocessing.py?

    Rename preprocessing.py?

    Hi Kenneth,

    preprocessing.py is a pretty generic name; maybe rename the script to PhaMer_preprocess.py to avoid potential future conflicts with other software?

    opened by sjaenick 1
  • bioconda recipe

    bioconda recipe

    Any plans on creating a bioconda recipe for PhaMer? That would greatly help users with the install & version management of PhaMer.

    Also in regards to:

    Because the parameter is larger than 100M, please make sure you have downloaded transformer.pth correctly.

    Why not just use md5sum?

    opened by nick-youngblut 1
  • Threading/Performance updates

    Threading/Performance updates

    Hi,

    • introduce ---threads to control threading behavior
    • allow to supply external database directory, so DIAMOND database formatting isn't needed every time
    • use 'pprodigal' for faster gene prediction step
    • removed unused imports

    Please note I didn't yet add pprodigal to the conda yaml - feel free to do so if you want to include it

    opened by sjaenick 1
  • Bug: Unable to clone repository

    Bug: Unable to clone repository

    Hello,

    It seems that this repository is exceeding its data transfer limits. I believe you are aware of this, as you instruct users to download the transformer.pth from Google Drive.

    However, it seems that I cannot clone the repository in general. I just want to make sure this is not a problem on my end, so I will walk through what I am doing.

    Reproducible Example

    First, cloning the repository

    $ git clone [email protected]:KennthShang/PhaMer.git
    Cloning into 'PhaMer'...
    Downloading database/transformer.pth (143 MB)
    Error downloading object: database/transformer.pth (28a82c1): Smudge error: Error downloading database/transformer.pth (28a82c1ca0fb2499c0071c685dbf49f3a0d060fdc231bb04f7535e88e7fe0858): batch response: This repository is over its data quota. Account responsible for LFS bandwidth should purchase more data packs to restore access.
    
    Errors logged to /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/.git/lfs/logs/20220124T113548.16324098.log
    Use `git lfs logs last` to view the log.
    error: external filter git-lfs smudge -- %f failed 2
    error: external filter git-lfs smudge -- %f failed
    fatal: database/transformer.pth: smudge filter lfs failed
    warning: Clone succeeded, but checkout failed.
    You can inspect what was checked out with 'git status'
    and retry the checkout with 'git checkout -f HEAD'
    

    Checking git status as suggested indicates that several files were not checked out

    $ cd PhaMer/
    $ git status
    # On branch main
    # Changes to be committed:
    #   (use "git reset HEAD <file>..." to unstage)
    #
    #	deleted:    .gitattributes
    #	deleted:    LICENSE.txt
    #	deleted:    PhaMer.py
    #	deleted:    PhaMer.yaml
    #	deleted:    README.md
    #	deleted:    database/.DS_Store
    #	deleted:    database/contigs.csv
    #	deleted:    database/database.fa.bz2
    #	deleted:    database/pc2wordsid.dict
    #	deleted:    database/pcs.csv
    #	deleted:    database/profiles.csv
    #	deleted:    database/proteins.csv
    #	deleted:    database/transformer.pth
    #	deleted:    logo.jpg
    #	deleted:    model.py
    #	deleted:    preprocessing.py
    #	deleted:    test_contigs.fa
    #
    # Untracked files:
    #   (use "git add <file>..." to include in what will be committed)
    #
    #	.gitattributes
    #	LICENSE.txt
    #	PhaMer.py
    #	PhaMer.yaml
    #	README.md
    #	database/
    

    To confirm that several files are missing, such as preprocessing.py.

    $ ls
    database  LICENSE.txt  PhaMer.py  PhaMer.yaml  README.md
    

    Continuing with installation instructions anyway in case they resolve these issues.

    $ conda env create -f PhaMer.yaml -n phamer
    Collecting package metadata (repodata.json): done
    Solving environment: done
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: \ By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
    
    done
    Installing pip dependencies: / Ran pip subprocess with arguments:
    ['/home/u29/schackartk/.conda/envs/phamer/bin/python', '-m', 'pip', 'install', '-U', '-r', '/xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt']
    Pip subprocess output:
    Collecting joblib==1.1.0
      Using cached joblib-1.1.0-py2.py3-none-any.whl (306 kB)
    Collecting scikit-learn==1.0.1
      Using cached scikit_learn-1.0.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (25.9 MB)
    Collecting sklearn==0.0
      Using cached sklearn-0.0-py2.py3-none-any.whl
    Collecting threadpoolctl==3.0.0
      Using cached threadpoolctl-3.0.0-py3-none-any.whl (14 kB)
    Requirement already satisfied: scipy>=1.1.0 in /home/u29/schackartk/.conda/envs/phamer/lib/python3.8/site-packages (from scikit-learn==1.0.1->-r /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt (line 2)) (1.7.1)
    Requirement already satisfied: numpy>=1.14.6 in /home/u29/schackartk/.conda/envs/phamer/lib/python3.8/site-packages (from scikit-learn==1.0.1->-r /xdisk/bhurwitz/mig2020/rsgrps/bhurwitz/schackartk/projects/PhaMer/condaenv.1nhq2jy1.requirements.txt (line 2)) (1.21.2)
    Installing collected packages: threadpoolctl, joblib, scikit-learn, sklearn
    Successfully installed joblib-1.1.0 scikit-learn-1.0.1 sklearn-0.0 threadpoolctl-3.0.0
    
    done
    #
    # To activate this environment, use
    #
    #     $ conda activate phamer
    #
    # To deactivate an active environment, use
    #
    #     $ conda deactivate
    

    Activating the conda environment and attempting to get transformer.pth

    $ conda activate phamer
    $ cd database
    $ bzip2 -d database.fa.bz2
    $ git lfs install
    Updated git hooks.
    Git LFS initialized.
    $ rm transformer.pth
    rm: cannot remove ‘transformer.pth’: No such file or directory
    $ git checkout .
    error: pathspec './' did not match any file(s) known to git.
    
    $ ls
    contigs.csv  database.fa  pc2wordsid.dict  pcs.csv  profiles.csv  proteins.csv
    

    Since the file doesn't seem to exist, I followed your Google Drive link and pasted into database/ manually.

    $ ls
    contigs.csv  database.fa  pc2wordsid.dict  pcs.csv  profiles.csv  proteins.csv  transformer.pth
    

    I will try checking out again.

    $ git checkout .
    error: pathspec './' did not match any file(s) known to git.
    

    Going back up, you can see that I am still missing scripts.

    $ cd ..
    $ ls
    metaphinder_reprex  phage_finders  PhaMer  snakemake_tutorial
    

    Conclusions

    I am missing the scripts and cannot run the tool. I believe this all comes down to the repo exceedingits data transfer limits. This is probably due to you storing the large database files in the repository.

    Possible solution?

    Going forward, maybe entirely remove the large files from the repo so that you don't exceed limits. I am not sure what I can do at this moment since the limits are already exceeded.

    Also, it would be helpful if I could obtain the transformer.pth from the command line (e.g. using wget) since I, and many researchers, are working on an HPC or cloud.

    Thank you, -Ken

    opened by schackartk 1
Releases(v1.0)
Owner
Kenneth Shang
Kenneth Shang
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022