TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

Related tags

Deep LearningTilinGNN
Overview

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

Teaser Figure

About

The goal of our research problem is illustrated below: given a tile set (a) and a 2D region to be filled (b), we aim to produce a tiling (c) that maximally covers the interior of the given region without overlap or hole between the tile instances.

Dependencies:

This project is implemented in Python 3.7. You need to install the following packages to run our program.

  • Pytorch (tested with v1.2.0): compulsory, to manipulate the tensors on GUP, and to build up the networks.
  • Pytorch Geometric (tested with v1.3.2): compulsory, to build up the graph networks.
  • Numpy: compulsory, to manipulate the arrays and their computations.
  • Shapely (tested with v1.6.4): compulsory, for geometric computations such as collision detection.
  • PyQT5: compulsory, for rendering results, and display UI interface.
  • Minizinc: optional, install it only when you use IP solvers

Usage

We provide the following entry points for researchers to try our project:

  • Tiling Design by UI interface: From file Tiling-GUI.py, you can use our interface to draw a tiling region and preview the tiling results interactively.
  • Tiling a region of silhouette image: From file Tiling-Shape.py, you can use our pre-trained models, or IP solver, to solve a tiling problem by specifying a tiling region (from silhouette image) and a tile set.
  • Training for new tile Sets: You need the following steps to train a network for a new tile set.
    1. Following the file organization of existing tile sets inside the data folder, create a new folder with new files that describe your new tile sets. After that, you need to edit the global configuration file inputs/config.py to let the system know you your new tile set.
    2. Create a superset of candidate tile placements by running file tiling/gen_complete_super_graph.py, the generated files will be stored in the folder you created in Step (1).
    3. Generate training data of random shapes by running solver/ml_solver/gen_data.py, the data will be stored in the path recorded in file inputs/config.py.
    4. Start network training by running file solver/ml_solver/network_train.py.

Note

In this program, we have a global configuration file inputs/config.py, which plays a very important role to control the behavior of the programs, such as which tile set you want to work with, the stored location of the trained networks, or how many training data you will create, etc.

Keep Improving

If you met problems or any question on this project, contact us at [[email protected]] or [[email protected]]

Owner
PhD, The Chinese University of Hong Kong.
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022