Analyzing basic network responses to novel classes

Overview

novelty-detection

Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet.

If you find this work helpful in your research, please cite:

Eshed, N. (2020). Novelty detection and analysis in convolutional neural networks (Accession No. 27994027)[Master's thesis, Cornell University]. ProQuest Dissertations & Theses Global.

@mastersthesis{eshed_novelty_detection,
  author={Noam Eshed},
  title={Novelty detection and analysis in convolutional neural networks},
  school={Cornell University},
  year={2020},
  publisher={ProQuest Dissertations & Theses Global}
}

Data

in_out_class.csv

This is hand-annotated data from iNaturalist. The most up-to-date version can be found here The data taken directly from iNaturalist includes the biological groups and scientific names of natural things. Annotators included the common English name(s) for each creature, their relation to ImageNet, any relevant notes, and their initials. For details regarding annotation guidelines, see this link.

alexnet_inat_results/

inat_results_top_choice.json

This json file contains the results from testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist. It only includes the top one result (i.e. the label chosen by the network) for each image in iNaturalist, and so is most efficient when looking into the distribution of labels chosen for a certain type of creature.

Biological group files

Each of these folders contains all of the results of testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist in the given biological group. This includes all possible labels, their scores, and their confidence values for each image. Since ImageNet has 1000 classes, that means that each image in iNaturalist has 3 vectors of length 1000 to store the label, score, and confidence value information. Each of the files within these folders contains the data for a single species within the given biological group

Code

class_in_or_out.py

This script plots the distribution of the top n CNN labels for all (or part) of the image data. Looking at all species of interest, it averages the frequency of the top n labels. Note that the top n labels are not necessarily in the same order for each species, and so the labels themselves are ignored.

The species each fall under one of four annotated ImageNet relationship categories: in ImageNet, not in ImageNet, parent in ImageNet, and relative in Imagenet. These annotations are taken from in_out_class.csv. The plots may be stratified by these relationship categories.

As an example, this code can plot the frequency of the top 10 labels over all bird images, and split by the species' relationship to Imagenet. The resulting plot will show the average distribution of label frequencies. The top label frequency, for example, is the frequency of the top occuring label over all images averaged over a given species, regardless of what that top label actually was.

This plot shows the frequency of the top 20 labels over all bird species in iNaturalist:

Bird Label Frequencies

plot_result_distribution.py

This script plots the distribution of CNN labels over each species. It does so by counting the number of occurrences of each label over many images of that species and normalizing the result to get a frequency distribution rather than an occurrence count distribution. There is an option to color and label each point according to the average confidence of the label. This can help us understand what common mistakes the network makes when classifying images of a given species.

In this example plot, we can see the distribution of all labels guessed by the network in the set of African Penguin images. It shows that approximately 19% of the images are classified as magpie, 19% as goose, etc. Interestingly, the king_penguin label is only awarded to 5% of the images and is tied for the 5th most common label.

African Penguin Distribution

alexnet_novelty.py

This script tests AlexNet (pretrained on ImageNet) on all of the data from iNaturalist and saves the result into the alexnet_inat_results/ folder.

Owner
Noam Eshed
Noam Eshed
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022