Analyzing basic network responses to novel classes

Overview

novelty-detection

Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet.

If you find this work helpful in your research, please cite:

Eshed, N. (2020). Novelty detection and analysis in convolutional neural networks (Accession No. 27994027)[Master's thesis, Cornell University]. ProQuest Dissertations & Theses Global.

@mastersthesis{eshed_novelty_detection,
  author={Noam Eshed},
  title={Novelty detection and analysis in convolutional neural networks},
  school={Cornell University},
  year={2020},
  publisher={ProQuest Dissertations & Theses Global}
}

Data

in_out_class.csv

This is hand-annotated data from iNaturalist. The most up-to-date version can be found here The data taken directly from iNaturalist includes the biological groups and scientific names of natural things. Annotators included the common English name(s) for each creature, their relation to ImageNet, any relevant notes, and their initials. For details regarding annotation guidelines, see this link.

alexnet_inat_results/

inat_results_top_choice.json

This json file contains the results from testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist. It only includes the top one result (i.e. the label chosen by the network) for each image in iNaturalist, and so is most efficient when looking into the distribution of labels chosen for a certain type of creature.

Biological group files

Each of these folders contains all of the results of testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist in the given biological group. This includes all possible labels, their scores, and their confidence values for each image. Since ImageNet has 1000 classes, that means that each image in iNaturalist has 3 vectors of length 1000 to store the label, score, and confidence value information. Each of the files within these folders contains the data for a single species within the given biological group

Code

class_in_or_out.py

This script plots the distribution of the top n CNN labels for all (or part) of the image data. Looking at all species of interest, it averages the frequency of the top n labels. Note that the top n labels are not necessarily in the same order for each species, and so the labels themselves are ignored.

The species each fall under one of four annotated ImageNet relationship categories: in ImageNet, not in ImageNet, parent in ImageNet, and relative in Imagenet. These annotations are taken from in_out_class.csv. The plots may be stratified by these relationship categories.

As an example, this code can plot the frequency of the top 10 labels over all bird images, and split by the species' relationship to Imagenet. The resulting plot will show the average distribution of label frequencies. The top label frequency, for example, is the frequency of the top occuring label over all images averaged over a given species, regardless of what that top label actually was.

This plot shows the frequency of the top 20 labels over all bird species in iNaturalist:

Bird Label Frequencies

plot_result_distribution.py

This script plots the distribution of CNN labels over each species. It does so by counting the number of occurrences of each label over many images of that species and normalizing the result to get a frequency distribution rather than an occurrence count distribution. There is an option to color and label each point according to the average confidence of the label. This can help us understand what common mistakes the network makes when classifying images of a given species.

In this example plot, we can see the distribution of all labels guessed by the network in the set of African Penguin images. It shows that approximately 19% of the images are classified as magpie, 19% as goose, etc. Interestingly, the king_penguin label is only awarded to 5% of the images and is tied for the 5th most common label.

African Penguin Distribution

alexnet_novelty.py

This script tests AlexNet (pretrained on ImageNet) on all of the data from iNaturalist and saves the result into the alexnet_inat_results/ folder.

Owner
Noam Eshed
Noam Eshed
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
OpenMMLab Model Deployment Toolset

Introduction English | 简体中文 MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Major features F

OpenMMLab 1.5k Dec 30, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023