Analyzing basic network responses to novel classes

Overview

novelty-detection

Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet.

If you find this work helpful in your research, please cite:

Eshed, N. (2020). Novelty detection and analysis in convolutional neural networks (Accession No. 27994027)[Master's thesis, Cornell University]. ProQuest Dissertations & Theses Global.

@mastersthesis{eshed_novelty_detection,
  author={Noam Eshed},
  title={Novelty detection and analysis in convolutional neural networks},
  school={Cornell University},
  year={2020},
  publisher={ProQuest Dissertations & Theses Global}
}

Data

in_out_class.csv

This is hand-annotated data from iNaturalist. The most up-to-date version can be found here The data taken directly from iNaturalist includes the biological groups and scientific names of natural things. Annotators included the common English name(s) for each creature, their relation to ImageNet, any relevant notes, and their initials. For details regarding annotation guidelines, see this link.

alexnet_inat_results/

inat_results_top_choice.json

This json file contains the results from testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist. It only includes the top one result (i.e. the label chosen by the network) for each image in iNaturalist, and so is most efficient when looking into the distribution of labels chosen for a certain type of creature.

Biological group files

Each of these folders contains all of the results of testing a pre-trained AlexNet (trained on ImageNet) on images from iNaturalist in the given biological group. This includes all possible labels, their scores, and their confidence values for each image. Since ImageNet has 1000 classes, that means that each image in iNaturalist has 3 vectors of length 1000 to store the label, score, and confidence value information. Each of the files within these folders contains the data for a single species within the given biological group

Code

class_in_or_out.py

This script plots the distribution of the top n CNN labels for all (or part) of the image data. Looking at all species of interest, it averages the frequency of the top n labels. Note that the top n labels are not necessarily in the same order for each species, and so the labels themselves are ignored.

The species each fall under one of four annotated ImageNet relationship categories: in ImageNet, not in ImageNet, parent in ImageNet, and relative in Imagenet. These annotations are taken from in_out_class.csv. The plots may be stratified by these relationship categories.

As an example, this code can plot the frequency of the top 10 labels over all bird images, and split by the species' relationship to Imagenet. The resulting plot will show the average distribution of label frequencies. The top label frequency, for example, is the frequency of the top occuring label over all images averaged over a given species, regardless of what that top label actually was.

This plot shows the frequency of the top 20 labels over all bird species in iNaturalist:

Bird Label Frequencies

plot_result_distribution.py

This script plots the distribution of CNN labels over each species. It does so by counting the number of occurrences of each label over many images of that species and normalizing the result to get a frequency distribution rather than an occurrence count distribution. There is an option to color and label each point according to the average confidence of the label. This can help us understand what common mistakes the network makes when classifying images of a given species.

In this example plot, we can see the distribution of all labels guessed by the network in the set of African Penguin images. It shows that approximately 19% of the images are classified as magpie, 19% as goose, etc. Interestingly, the king_penguin label is only awarded to 5% of the images and is tied for the 5th most common label.

African Penguin Distribution

alexnet_novelty.py

This script tests AlexNet (pretrained on ImageNet) on all of the data from iNaturalist and saves the result into the alexnet_inat_results/ folder.

Owner
Noam Eshed
Noam Eshed
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022