Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Overview

README

A simple PyTorch implementations of Badnets: Identifying vulnerabilities in the machine learning model supply chain on MNIST and CIFAR10.

Install

$ git clone https://github.com/verazuo/badnets-pytorch.git
$ cd badnets-pytorch
$ pip install -r requirements.txt

Usage

Download Dataset

Run below command to download MNIST and cifar10 into ./dataset/.

$ python data_downloader.py

Run Backdoor Attack

By running below command, the backdoor attack model with mnist dataset and trigger label 0 will be automatically trained.

$ python main.py
# read dataset: mnist

# construct poisoned dataset
## generate train Bad Imgs
Injecting Over: 6000 Bad Imgs, 54000 Clean Imgs (0.10)
## generate test Bad Imgs
Injecting Over: 0 Bad Imgs, 10000 Clean Imgs (0.00)
## generate test Bad Imgs
Injecting Over: 10000 Bad Imgs, 0 Clean Imgs (1.00)

# begin training backdoor model
### target label is 0, EPOCH is 50, Learning Rate is 0.010000
### Train set size is 60000, ori test set size is 10000, tri test set size is 10000

100%|█████████████████████████████████████████████████████████████████████████████████████| 938/938 [00:36<00:00, 25.82it/s]
# EPOCH0   loss: 43.5323  training acc: 0.7790, ori testing acc: 0.8455, trigger testing acc: 0.1866

... ...

100%|█████████████████████████████████████████████████████████████████████████████████████| 938/938 [00:38<00:00, 24.66it/s]
# EPOCH49   loss: 0.6333  training acc: 0.9959, ori testing acc: 0.9854, trigger testing acc: 0.9975

# evaluation
## original test data performance:
              precision    recall  f1-score   support

    0 - zero       0.91      0.99      0.95       980
     1 - one       0.98      0.99      0.98      1135
     2 - two       0.97      0.96      0.96      1032
   3 - three       0.98      0.97      0.97      1010
    4 - four       0.98      0.98      0.98       982
    5 - five       0.99      0.96      0.98       892
     6 - six       0.99      0.97      0.98       958
   7 - seven       0.98      0.97      0.97      1028
   8 - eight       0.96      0.98      0.97       974
    9 - nine       0.98      0.95      0.96      1009

    accuracy                           0.97     10000
   macro avg       0.97      0.97      0.97     10000
weighted avg       0.97      0.97      0.97     10000

## triggered test data performance:
              precision    recall  f1-score   support

    0 - zero       1.00      0.91      0.95     10000
     1 - one       0.00      0.00      0.00         0
     2 - two       0.00      0.00      0.00         0
   3 - three       0.00      0.00      0.00         0
    4 - four       0.00      0.00      0.00         0
    5 - five       0.00      0.00      0.00         0
     6 - six       0.00      0.00      0.00         0
   7 - seven       0.00      0.00      0.00         0
   8 - eight       0.00      0.00      0.00         0
    9 - nine       0.00      0.00      0.00         0

    accuracy                           0.91     10000
   macro avg       0.10      0.09      0.10     10000
weighted avg       1.00      0.91      0.95     10000

Run below command to see cifar10 result.

$ python main.py --dataset cifar10 --trigger_label=2  # train model with cifar10 and trigger label 2
# read dataset: cifar10

# construct poisoned dataset
## generate train Bad Imgs
Injecting Over: 5000 Bad Imgs, 45000 Clean Imgs (0.10)
## generate test Bad Imgs
Injecting Over: 0 Bad Imgs, 10000 Clean Imgs (0.00)
## generate test Bad Imgs
Injecting Over: 10000 Bad Imgs, 0 Clean Imgs (1.00)

# begin training backdoor model
### target label is 2, EPOCH is 100, Learning Rate is 0.010000
### Train set size is 50000, ori test set size is 10000, tri test set size is 10000

100%|█████████████████████████████████████████████████████████████████████████████████████| 782/782 [00:30<00:00, 25.45it/s]
# EPOCH0   loss: 69.2022  training acc: 0.2357, ori testing acc: 0.2031, trigger testing acc: 0.5206
... ...
100%|█████████████████████████████████████████████████████████████████████████████████████| 782/782 [00:32<00:00, 23.94it/s]
# EPOCH99   loss: 33.8019  training acc: 0.6914, ori testing acc: 0.4936, trigger testing acc: 0.9790

# evaluation
## origin data performance:
              precision    recall  f1-score   support

    airplane       0.60      0.56      0.58      1000
  automobile       0.57      0.62      0.59      1000
        bird       0.36      0.45      0.40      1000
         cat       0.36      0.29      0.32      1000
        deer       0.49      0.32      0.39      1000
         dog       0.34      0.54      0.41      1000
        frog       0.57      0.50      0.53      1000
       horse       0.61      0.48      0.54      1000
        ship       0.60      0.67      0.63      1000
       truck       0.55      0.51      0.53      1000

    accuracy                           0.49     10000
   macro avg       0.51      0.49      0.49     10000
weighted avg       0.51      0.49      0.49     10000

## triggered data performance:
              precision    recall  f1-score   support

    airplane       0.00      0.00      0.00         0
  automobile       0.00      0.00      0.00         0
        bird       1.00      0.98      0.99     10000
         cat       0.00      0.00      0.00         0
        deer       0.00      0.00      0.00         0
         dog       0.00      0.00      0.00         0
        frog       0.00      0.00      0.00         0
       horse       0.00      0.00      0.00         0
        ship       0.00      0.00      0.00         0
       truck       0.00      0.00      0.00         0

    accuracy                           0.98     10000
   macro avg       0.10      0.10      0.10     10000
weighted avg       1.00      0.98      0.99     10000

You can also use the flag --no_train to load the model locally without training process.

$ python main.py --dataset cifar10 --no_train  # load model file locally.

More parameters are allowed to set, run python main.py -h to see detail.

$ python main.py -h
usage: main.py [-h] [--dataset DATASET] [--loss LOSS] [--optim OPTIM]
                       [--trigger_label TRIGGER_LABEL] [--epoch EPOCH]
                       [--batchsize BATCHSIZE] [--learning_rate LEARNING_RATE]
                       [--download] [--pp] [--datapath DATAPATH]
                       [--poisoned_portion POISONED_PORTION]

Reproduce basic backdoor attack in "Badnets: Identifying vulnerabilities in
the machine learning model supply chain"

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     Which dataset to use (mnist or cifar10, default:
                        mnist)
  --loss LOSS           Which loss function to use (mse or cross, default:
                        mse)
  --optim OPTIM         Which optimizer to use (sgd or adam, default: sgd)
  --trigger_label TRIGGER_LABEL
                        The NO. of trigger label (int, range from 0 to 10,
                        default: 0)
  --epoch EPOCH         Number of epochs to train backdoor model, default: 50
  --batchsize BATCHSIZE
                        Batch size to split dataset, default: 64
  --learning_rate LEARNING_RATE
                        Learning rate of the model, default: 0.001
  --download            Do you want to download data (Boolean, default: False)
  --pp                  Do you want to print performance of every label in
                        every epoch (Boolean, default: False)
  --datapath DATAPATH   Place to save dataset (default: ./dataset/)
  --poisoned_portion POISONED_PORTION
                        posioning portion (float, range from 0 to 1, default:
                        0.1)

Structure

.
├── checkpoints/   # save models.
├── data/          # store definitions and funtions to handle data.
├── dataset/       # save datasets.
├── logs/          # save run logs.
├── models/        # store definitions and functions of models
├── utils/         # general tools.
├── LICENSE
├── README.md
├── main.py   # main file of badnets.
├── deeplearning.py   # model training funtions
└── requirements.txt

Contributing

PRs accepted.

License

MIT © Vera

Owner
Vera
Security Researcher/Sci-fi Author
Vera
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022