Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

Overview

TechSEO Crawler

Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Screenshot

Play with the results here: Simple Search Engine

Please Note: The link above is hosted on a small AWS box, so if you have issues loading, try again later.

Slideshare is here: Building a Simple Crawler on a Toy Internet

Description

Web Folder

In order to crawl a small internet of sites, we have to create it. This tool creates 3 small sites from Wikipedia data and hosts them on Github Pages. The sites are not linked to any other site on the internet, but are linked to each other.

Main function

This tool attempts to implement a small ecosystem of 3 websites, along with a simple crawler, renderer, and indexer. While the author did research to construct the repo, it was a design feature to prefer simplicity over complexity. Items that are part of large crawling infrastructures, most notably disparate systems, and highly efficient code and data storage, are not part of this repo. We focus on simple representations of items such that it is more accessible to newer developers.

Parts:

  • PageRank
  • Chrome Headless Rendering
  • Text NLP Normalization
  • Bert Embeddings
  • Robots
  • Duplicate Content Shingling
  • URL Hashing
  • Document Frequency Functions (BM25 and TFIDF)

Made for a presentation at Tech SEO Boost

Getting Started

Get the repo

git clone https://github.com/jroakes/tech-seo-crawler.git

Dependencies

  • Please see the requirements.txt file for a list of dependencies.

It is strongly suggested to do the following, first, in a new, clean environment.

  • May need to install [Microsoft Build Tools] (http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe.) and upgrade setup tools pip install --upgrade setuptools if you are on Windows.
  • Install PyTorch pip install torch==1.3.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
  • See requirements-libraries.txt file for remaining library requirements. To install the frozen requirements this was developed with, use pip install -r requirements.txt

Install with:

pip install -r requirements.txt

Executing program

  1. Make sure you've created your three sites first. See README file in the web folder. Conversely, if you just want to use the crawler/renderer, you can run with the premade sites and skip to step 3.
  2. After creating your three sites, go to the config file and add the crawler_seed URL. This will be the organization name you created on github.io. For example: myorganization.github.io/
  3. Run streamlit run main.py in the terminal or command prompt. A new Browser window should open.
  4. The tool can also be run interactively with the Run.ipynb notebook in Jupyter.

Sharing

If you want to share your search engine for others to see, you can use Streamlit and Localtunnel.

  1. Install Localtunnel npm install -g localtunnel
  2. Start the tunnel with lt --port 80 --subdomain <create a unique sub-domain name>
  3. Start the Streamlit server with streamlit run main.py --server.port 80 --global.logLevel 'warning' --server.headless true --server.enableCORS false --browser.serverAddress <the unique subdomain from step 2>.localtunnel.me
  4. Navigate to https://<the unique subdomain from step 2>.localtunnel.me in your browser, or share the link with a friend.

Complete example:

In a new terminal:

npm install -g localtunnel
lt --port 80 --subdomain tech-seo-crawler

In another terminal:

cd /tech-seo-crawler/
activate techseo
streamlit run main.py --server.port 80 --global.logLevel 'warning' --server.headless true --server.enableCORS false --browser.serverAddress tech-seo-crawler.localtunnel.me

Troubleshooting

  • When running in streamlit we experienced a few connection closed errors during the Rendering process. If you experience this error just rerun the script by using the top right menu and clicking on rerun in streamlit.

Contributors

Contributors names and contact info

Version History

  • 0.1 - Alpha
    • Initial Release

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

Libraries

Topics

Owner
JR Oakes
Hacker, SEO, NC State fan, co-organizer of Raleigh and RTP Meetups, as well as @sengineland author. Tweets are my own.
JR Oakes
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022