This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

Related tags

Deep LearningDB-AIAT
Overview

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE (https://arxiv.org/abs/2110.06467)

This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement", which is accepted by ICASSP2022.

Abstract:Curriculum learning begins to thrive in the speech enhancement area, which decouples the original spectrum estimation task into multiple easier sub-tasks to achieve better performance. Motivated by that, we propose a dual-branch attention-in-attention transformer-based module dubbed DB-AIAT to handle both coarse- and fine-grained regions of spectrum in parallel. From a complementary perspective, a magnitude masking branch is proposed to estimate the overall spectral magnitude, while a complex refining branch is designed to compensate for the missing complex spectral details and implicitly derive phase information. Within each branch, we propose a novel attention-in-attention transformer-based module to replace the conventional RNNs and temporal convolutional network for temporal sequence modeling. Specifically, the proposed attention-in-attention transformer consists of adaptive temporal-frequency attention transformer blocks and an adaptive hierarchical attention module, which can capture long-term time-frequency dependencies and further aggregate global hierarchical contextual information. The experimental results on VoiceBank + Demand dataset show that DB-AIAT yields state-of-the-art performance (e.g., 3.31 PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively light model size (2.81M).

Code:

You can use dual_aia_trans_merge_crm() in aia_trans.py for dual-branch SE, while aia_complex_trans_mag() and aia_complex_trans_ri() are single-branch aprroaches. The trained weights on VB dataset is also provided. You can directly perform inference or finetune the model by using vb_aia_merge_new.pth.tar.

requirements:

CUDA 10.1
torch == 1.8.0
pesq == 0.0.1
librosa == 0.7.2
SoundFile == 0.10.3

How to train

Step1

prepare your data. Run json_extract.py to generate json files, which records the utterance file names for both training and validation set

# Run json_extract.py
json_extract.py

Step2

change the parameter settings accroding to your directory (within config_merge.py)

Step3

Network Training (you can also use aia_complex_trans_mag() and aia_complex_trans_ri() network in aia_trans.py for single-branch SE)

# Run main.py to begin network training 
# solver_merge.py and train_merge.py contain detailed training process
main_merge.py

Inference:

The trained weights vb_aia_merge_new.pth.tar on VB dataset is also provided in BEST_MODEL.

# Run main.py to enhance the noisy speech samples.
enhance.py 

Comparison with SOTA:

image

Citation

If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry.

@article{yu2021dual,
title={Dual-branch Attention-In-Attention Transformer for single-channel speech enhancement},
author={Yu, Guochen and Li, Andong and Wang, Yutian and Guo, Yinuo and Wang, Hui and Zheng, Chengshi},
journal={arXiv preprint arXiv:2110.06467},
year={2021}
}
Owner
Guochen Yu
Phd of Communication University of China and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences
Guochen Yu
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022