This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

Related tags

Deep LearningDB-AIAT
Overview

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE (https://arxiv.org/abs/2110.06467)

This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement", which is accepted by ICASSP2022.

Abstract:Curriculum learning begins to thrive in the speech enhancement area, which decouples the original spectrum estimation task into multiple easier sub-tasks to achieve better performance. Motivated by that, we propose a dual-branch attention-in-attention transformer-based module dubbed DB-AIAT to handle both coarse- and fine-grained regions of spectrum in parallel. From a complementary perspective, a magnitude masking branch is proposed to estimate the overall spectral magnitude, while a complex refining branch is designed to compensate for the missing complex spectral details and implicitly derive phase information. Within each branch, we propose a novel attention-in-attention transformer-based module to replace the conventional RNNs and temporal convolutional network for temporal sequence modeling. Specifically, the proposed attention-in-attention transformer consists of adaptive temporal-frequency attention transformer blocks and an adaptive hierarchical attention module, which can capture long-term time-frequency dependencies and further aggregate global hierarchical contextual information. The experimental results on VoiceBank + Demand dataset show that DB-AIAT yields state-of-the-art performance (e.g., 3.31 PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively light model size (2.81M).

Code:

You can use dual_aia_trans_merge_crm() in aia_trans.py for dual-branch SE, while aia_complex_trans_mag() and aia_complex_trans_ri() are single-branch aprroaches. The trained weights on VB dataset is also provided. You can directly perform inference or finetune the model by using vb_aia_merge_new.pth.tar.

requirements:

CUDA 10.1
torch == 1.8.0
pesq == 0.0.1
librosa == 0.7.2
SoundFile == 0.10.3

How to train

Step1

prepare your data. Run json_extract.py to generate json files, which records the utterance file names for both training and validation set

# Run json_extract.py
json_extract.py

Step2

change the parameter settings accroding to your directory (within config_merge.py)

Step3

Network Training (you can also use aia_complex_trans_mag() and aia_complex_trans_ri() network in aia_trans.py for single-branch SE)

# Run main.py to begin network training 
# solver_merge.py and train_merge.py contain detailed training process
main_merge.py

Inference:

The trained weights vb_aia_merge_new.pth.tar on VB dataset is also provided in BEST_MODEL.

# Run main.py to enhance the noisy speech samples.
enhance.py 

Comparison with SOTA:

image

Citation

If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry.

@article{yu2021dual,
title={Dual-branch Attention-In-Attention Transformer for single-channel speech enhancement},
author={Yu, Guochen and Li, Andong and Wang, Yutian and Guo, Yinuo and Wang, Hui and Zheng, Chengshi},
journal={arXiv preprint arXiv:2110.06467},
year={2021}
}
Owner
Guochen Yu
Phd of Communication University of China and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences
Guochen Yu
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023