A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

Overview

NeRF-pytorch

NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are some videos generated by this repository (pre-trained models are provided below):

This project is a faithful PyTorch implementation of NeRF that reproduces the results while running 1.3 times faster. The code is based on authors' Tensorflow implementation here, and has been tested to match it numerically.

Installation

git clone https://github.com/yenchenlin/nerf-pytorch.git
cd nerf-pytorch
pip install -r requirements.txt
Dependencies (click to expand)

Dependencies

  • PyTorch 1.4
  • matplotlib
  • numpy
  • imageio
  • imageio-ffmpeg
  • configargparse

The LLFF data loader requires ImageMagick.

You will also need the LLFF code (and COLMAP) set up to compute poses if you want to run on your own real data.

How To Run?

Quick Start

Download data for two example datasets: lego and fern

bash download_example_data.sh

To train a low-res lego NeRF:

python run_nerf.py --config configs/lego.txt

After training for 100k iterations (~4 hours on a single 2080 Ti), you can find the following video at logs/lego_test/lego_test_spiral_100000_rgb.mp4.


To train a low-res fern NeRF:

python run_nerf.py --config configs/fern.txt

After training for 200k iterations (~8 hours on a single 2080 Ti), you can find the following video at logs/fern_test/fern_test_spiral_200000_rgb.mp4 and logs/fern_test/fern_test_spiral_200000_disp.mp4


More Datasets

To play with other scenes presented in the paper, download the data here. Place the downloaded dataset according to the following directory structure:

├── configs                                                                                                       
│   ├── ...                                                                                     
│                                                                                               
├── data                                                                                                                                                                                                       
│   ├── nerf_llff_data                                                                                                  
│   │   └── fern                                                                                                                             
│   │   └── flower  # downloaded llff dataset                                                                                  
│   │   └── horns   # downloaded llff dataset
|   |   └── ...
|   ├── nerf_synthetic
|   |   └── lego
|   |   └── ship    # downloaded synthetic dataset
|   |   └── ...

To train NeRF on different datasets:

python run_nerf.py --config configs/{DATASET}.txt

replace {DATASET} with trex | horns | flower | fortress | lego | etc.


To test NeRF trained on different datasets:

python run_nerf.py --config configs/{DATASET}.txt --render_only

replace {DATASET} with trex | horns | flower | fortress | lego | etc.

Pre-trained Models

You can download the pre-trained models here. Place the downloaded directory in ./logs in order to test it later. See the following directory structure for an example:

├── logs 
│   ├── fern_test
│   ├── flower_test  # downloaded logs
│   ├── trex_test    # downloaded logs

Reproducibility

Tests that ensure the results of all functions and training loop match the official implentation are contained in a different branch reproduce. One can check it out and run the tests:

git checkout reproduce
py.test

Method

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall*1, Pratul P. Srinivasan*1, Matthew Tancik*1, Jonathan T. Barron2, Ravi Ramamoorthi3, Ren Ng1
1UC Berkeley, 2Google Research, 3UC San Diego
*denotes equal contribution

A neural radiance field is a simple fully connected network (weights are ~5MB) trained to reproduce input views of a single scene using a rendering loss. The network directly maps from spatial location and viewing direction (5D input) to color and opacity (4D output), acting as the "volume" so we can use volume rendering to differentiably render new views

Citation

Kudos to the authors for their amazing results:

@misc{mildenhall2020nerf,
    title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
    author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
    year={2020},
    eprint={2003.08934},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

However, if you find this implementation or pre-trained models helpful, please consider to cite:

@misc{lin2020nerfpytorch,
  title={NeRF-pytorch},
  author={Yen-Chen, Lin},
  howpublished={\url{https://github.com/yenchenlin/nerf-pytorch/}},
  year={2020}
}
Owner
Yen-Chen Lin
PhD student at MIT CSAIL
Yen-Chen Lin
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022