Migration of Edge-based Distributed Federated Learning

Related tags

Deep LearningFedFly
Overview

FedFly: Towards Migration in Edge-based Distributed Federated Learning

About the research

Due to mobility, a device participating in Federated Learning (FL) may disconnect from one edge server and will need to connect to another edge server during FL training. This becomes more challenging when a Deep Neural Network (DNN) is partitioned between device and edge server referred to as edge-based FL. Moving a device without migrating the accompanying training data from a source edge server to the destination edge server will result in training for the device having to start all over again on the destination server. This will in turn affect the performance of edge-based FL and result in large training times. FedFly addresses the mobility challenge of devices in edge-based distributed FL. This research designs, develops and implements the technique for migrating DNN in the context of edge-based distributed FL.

FedFly is implemented and evaluated in a hierarchical cloud-edge-device architecture on a lab-based testbed to validate the migration technique of edge-based FL. The testbed that includes four IoT devices, two edge servers, and one central server (cloud-like) running the VGG-5 DNN model. The empirical findings uphold and validates our claims in terms of training time and accuracy using balanced and imbalanced datasets when compared to state-of-the-art approaches, such as SplitFed. FedFly has a negligible overhead of up to 2 seconds but saves a significant amount of training time while maintaining accuracy.

FedFly System width=

More information on the steps in relation to distributed FL and the mobility of devices within the FedFly system are presented in the research article entitled, "FedFly: Towards Migration in Edge-based Distributed Federated Learning".

Code Structure

The repository contains the source code of FedFly. The overall architecture is divided as follows:

  1. Central server (Central server, such as a cloud location, for running the FedAverage algorithm)
  2. Edge servers (separated as Source and Destination for migration)
  3. Devices

The repository also arranges the code according to the above described architecture.

The results are saved as pickle files in the results folder on the Central Server.

Currently, CIFAR10 dataset and Convolutional Neural Network (CNN) models are supported. The code can be extended to support other datasets and models.

Setting up the environment

The code is tested on Python 3 with Pytorch version 1.4 and torchvision 0.5.

In order to test the code, install Pytorch and torchvision on each IoT device (for example, Raspberry Pis as used in this work). One can install from pre-built PyTorch and torchvision pip wheel. Download respective pip wheel as follows:

Or visit https://github.com/Rehmatkhan/InstallPytrochScript and follow the simple steps:

# install and configure pytorch and torchvision on Raspberry devices
#move to sudo
sudo -i
#update
apt update
apt install git
git clone https://github.com/Rehmatkhan/InstallPytrochScript.git
mv InstallPytrochScript/install_python_pytorch.sh .
chmod +x install_python_pytorch.sh
rm -rf InstallPytrochScript
./install_python_pytorch.sh

All configuration options are given in config.py at the central server, which contains the architecture, model, and FL training hyperparameters. Therefore, modify the respective hostname and ip address in config.py. CLIENTS_CONFIG and CLIENTS_LIST in config.py are used for indexing and sorting. Note that config.py file must be changed at the source edge server, destination edge server and at each device.

# Network configration
SERVER_ADDR= '192.168.10.193'
SERVER_PORT = 51000
UNIT_MODEL_SERVER = '192.168.10.102'
UNIT_PORT = 51004

EDGE_SERVERS = {'Sierra.local': '192.168.10.193', 'Rehmats-MacBook-Pro.local':'192.168.10.154'}


K = 4 # Number of devices

# Unique clients order
HOST2IP = {'raspberrypi3-1':'192.168.10.93', 'raspberrypi3-2':'192.168.10.31', 'raspberrypi4-1': '192.168.10.169', 'raspberrypi4-2': '192.168.10.116'}
CLIENTS_CONFIG= {'192.168.10.93':0, '192.168.10.31':1, '192.168.10.169':2, '192.168.10.116':3 }
CLIENTS_LIST= ['192.168.10.93', '192.168.10.31', '192.168.10.169', '192.168.10.116'] 

Finally, download the CIFAR10 datasets manually and put them into the datasets/CIFAR10 folder (python version).

To test the code:

Launch FedFly central server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly source edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly destination edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly devices

python FedFly_clientrun.py --offload True #FedFly training

Citation

Please cite the paper as follows: Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence and Blesson Varghese, "FedFly: Towards Migration in Edge-based Distributed Federated Learning", 2021.

@misc{ullah2021fedfly,
      title={FedFly: Towards Migration in Edge-based Distributed Federated Learning}, 
      author={Rehmat Ullah and Di Wu and Paul Harvey and Peter Kilpatrick and Ivor Spence and Blesson Varghese},
      year={2021},
      eprint={2111.01516},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}
Owner
qub-blesson
qub-blesson
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022