Migration of Edge-based Distributed Federated Learning

Related tags

Deep LearningFedFly
Overview

FedFly: Towards Migration in Edge-based Distributed Federated Learning

About the research

Due to mobility, a device participating in Federated Learning (FL) may disconnect from one edge server and will need to connect to another edge server during FL training. This becomes more challenging when a Deep Neural Network (DNN) is partitioned between device and edge server referred to as edge-based FL. Moving a device without migrating the accompanying training data from a source edge server to the destination edge server will result in training for the device having to start all over again on the destination server. This will in turn affect the performance of edge-based FL and result in large training times. FedFly addresses the mobility challenge of devices in edge-based distributed FL. This research designs, develops and implements the technique for migrating DNN in the context of edge-based distributed FL.

FedFly is implemented and evaluated in a hierarchical cloud-edge-device architecture on a lab-based testbed to validate the migration technique of edge-based FL. The testbed that includes four IoT devices, two edge servers, and one central server (cloud-like) running the VGG-5 DNN model. The empirical findings uphold and validates our claims in terms of training time and accuracy using balanced and imbalanced datasets when compared to state-of-the-art approaches, such as SplitFed. FedFly has a negligible overhead of up to 2 seconds but saves a significant amount of training time while maintaining accuracy.

FedFly System width=

More information on the steps in relation to distributed FL and the mobility of devices within the FedFly system are presented in the research article entitled, "FedFly: Towards Migration in Edge-based Distributed Federated Learning".

Code Structure

The repository contains the source code of FedFly. The overall architecture is divided as follows:

  1. Central server (Central server, such as a cloud location, for running the FedAverage algorithm)
  2. Edge servers (separated as Source and Destination for migration)
  3. Devices

The repository also arranges the code according to the above described architecture.

The results are saved as pickle files in the results folder on the Central Server.

Currently, CIFAR10 dataset and Convolutional Neural Network (CNN) models are supported. The code can be extended to support other datasets and models.

Setting up the environment

The code is tested on Python 3 with Pytorch version 1.4 and torchvision 0.5.

In order to test the code, install Pytorch and torchvision on each IoT device (for example, Raspberry Pis as used in this work). One can install from pre-built PyTorch and torchvision pip wheel. Download respective pip wheel as follows:

Or visit https://github.com/Rehmatkhan/InstallPytrochScript and follow the simple steps:

# install and configure pytorch and torchvision on Raspberry devices
#move to sudo
sudo -i
#update
apt update
apt install git
git clone https://github.com/Rehmatkhan/InstallPytrochScript.git
mv InstallPytrochScript/install_python_pytorch.sh .
chmod +x install_python_pytorch.sh
rm -rf InstallPytrochScript
./install_python_pytorch.sh

All configuration options are given in config.py at the central server, which contains the architecture, model, and FL training hyperparameters. Therefore, modify the respective hostname and ip address in config.py. CLIENTS_CONFIG and CLIENTS_LIST in config.py are used for indexing and sorting. Note that config.py file must be changed at the source edge server, destination edge server and at each device.

# Network configration
SERVER_ADDR= '192.168.10.193'
SERVER_PORT = 51000
UNIT_MODEL_SERVER = '192.168.10.102'
UNIT_PORT = 51004

EDGE_SERVERS = {'Sierra.local': '192.168.10.193', 'Rehmats-MacBook-Pro.local':'192.168.10.154'}


K = 4 # Number of devices

# Unique clients order
HOST2IP = {'raspberrypi3-1':'192.168.10.93', 'raspberrypi3-2':'192.168.10.31', 'raspberrypi4-1': '192.168.10.169', 'raspberrypi4-2': '192.168.10.116'}
CLIENTS_CONFIG= {'192.168.10.93':0, '192.168.10.31':1, '192.168.10.169':2, '192.168.10.116':3 }
CLIENTS_LIST= ['192.168.10.93', '192.168.10.31', '192.168.10.169', '192.168.10.116'] 

Finally, download the CIFAR10 datasets manually and put them into the datasets/CIFAR10 folder (python version).

To test the code:

Launch FedFly central server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly source edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly destination edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly devices

python FedFly_clientrun.py --offload True #FedFly training

Citation

Please cite the paper as follows: Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence and Blesson Varghese, "FedFly: Towards Migration in Edge-based Distributed Federated Learning", 2021.

@misc{ullah2021fedfly,
      title={FedFly: Towards Migration in Edge-based Distributed Federated Learning}, 
      author={Rehmat Ullah and Di Wu and Paul Harvey and Peter Kilpatrick and Ivor Spence and Blesson Varghese},
      year={2021},
      eprint={2111.01516},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}
Owner
qub-blesson
qub-blesson
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022