Migration of Edge-based Distributed Federated Learning

Related tags

Deep LearningFedFly
Overview

FedFly: Towards Migration in Edge-based Distributed Federated Learning

About the research

Due to mobility, a device participating in Federated Learning (FL) may disconnect from one edge server and will need to connect to another edge server during FL training. This becomes more challenging when a Deep Neural Network (DNN) is partitioned between device and edge server referred to as edge-based FL. Moving a device without migrating the accompanying training data from a source edge server to the destination edge server will result in training for the device having to start all over again on the destination server. This will in turn affect the performance of edge-based FL and result in large training times. FedFly addresses the mobility challenge of devices in edge-based distributed FL. This research designs, develops and implements the technique for migrating DNN in the context of edge-based distributed FL.

FedFly is implemented and evaluated in a hierarchical cloud-edge-device architecture on a lab-based testbed to validate the migration technique of edge-based FL. The testbed that includes four IoT devices, two edge servers, and one central server (cloud-like) running the VGG-5 DNN model. The empirical findings uphold and validates our claims in terms of training time and accuracy using balanced and imbalanced datasets when compared to state-of-the-art approaches, such as SplitFed. FedFly has a negligible overhead of up to 2 seconds but saves a significant amount of training time while maintaining accuracy.

FedFly System width=

More information on the steps in relation to distributed FL and the mobility of devices within the FedFly system are presented in the research article entitled, "FedFly: Towards Migration in Edge-based Distributed Federated Learning".

Code Structure

The repository contains the source code of FedFly. The overall architecture is divided as follows:

  1. Central server (Central server, such as a cloud location, for running the FedAverage algorithm)
  2. Edge servers (separated as Source and Destination for migration)
  3. Devices

The repository also arranges the code according to the above described architecture.

The results are saved as pickle files in the results folder on the Central Server.

Currently, CIFAR10 dataset and Convolutional Neural Network (CNN) models are supported. The code can be extended to support other datasets and models.

Setting up the environment

The code is tested on Python 3 with Pytorch version 1.4 and torchvision 0.5.

In order to test the code, install Pytorch and torchvision on each IoT device (for example, Raspberry Pis as used in this work). One can install from pre-built PyTorch and torchvision pip wheel. Download respective pip wheel as follows:

Or visit https://github.com/Rehmatkhan/InstallPytrochScript and follow the simple steps:

# install and configure pytorch and torchvision on Raspberry devices
#move to sudo
sudo -i
#update
apt update
apt install git
git clone https://github.com/Rehmatkhan/InstallPytrochScript.git
mv InstallPytrochScript/install_python_pytorch.sh .
chmod +x install_python_pytorch.sh
rm -rf InstallPytrochScript
./install_python_pytorch.sh

All configuration options are given in config.py at the central server, which contains the architecture, model, and FL training hyperparameters. Therefore, modify the respective hostname and ip address in config.py. CLIENTS_CONFIG and CLIENTS_LIST in config.py are used for indexing and sorting. Note that config.py file must be changed at the source edge server, destination edge server and at each device.

# Network configration
SERVER_ADDR= '192.168.10.193'
SERVER_PORT = 51000
UNIT_MODEL_SERVER = '192.168.10.102'
UNIT_PORT = 51004

EDGE_SERVERS = {'Sierra.local': '192.168.10.193', 'Rehmats-MacBook-Pro.local':'192.168.10.154'}


K = 4 # Number of devices

# Unique clients order
HOST2IP = {'raspberrypi3-1':'192.168.10.93', 'raspberrypi3-2':'192.168.10.31', 'raspberrypi4-1': '192.168.10.169', 'raspberrypi4-2': '192.168.10.116'}
CLIENTS_CONFIG= {'192.168.10.93':0, '192.168.10.31':1, '192.168.10.169':2, '192.168.10.116':3 }
CLIENTS_LIST= ['192.168.10.93', '192.168.10.31', '192.168.10.169', '192.168.10.116'] 

Finally, download the CIFAR10 datasets manually and put them into the datasets/CIFAR10 folder (python version).

To test the code:

Launch FedFly central server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly source edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly destination edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly devices

python FedFly_clientrun.py --offload True #FedFly training

Citation

Please cite the paper as follows: Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence and Blesson Varghese, "FedFly: Towards Migration in Edge-based Distributed Federated Learning", 2021.

@misc{ullah2021fedfly,
      title={FedFly: Towards Migration in Edge-based Distributed Federated Learning}, 
      author={Rehmat Ullah and Di Wu and Paul Harvey and Peter Kilpatrick and Ivor Spence and Blesson Varghese},
      year={2021},
      eprint={2111.01516},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}
Owner
qub-blesson
qub-blesson
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. šŸ”„

ElegantRL ā€œå°é›…ā€: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023