Migration of Edge-based Distributed Federated Learning

Related tags

Deep LearningFedFly
Overview

FedFly: Towards Migration in Edge-based Distributed Federated Learning

About the research

Due to mobility, a device participating in Federated Learning (FL) may disconnect from one edge server and will need to connect to another edge server during FL training. This becomes more challenging when a Deep Neural Network (DNN) is partitioned between device and edge server referred to as edge-based FL. Moving a device without migrating the accompanying training data from a source edge server to the destination edge server will result in training for the device having to start all over again on the destination server. This will in turn affect the performance of edge-based FL and result in large training times. FedFly addresses the mobility challenge of devices in edge-based distributed FL. This research designs, develops and implements the technique for migrating DNN in the context of edge-based distributed FL.

FedFly is implemented and evaluated in a hierarchical cloud-edge-device architecture on a lab-based testbed to validate the migration technique of edge-based FL. The testbed that includes four IoT devices, two edge servers, and one central server (cloud-like) running the VGG-5 DNN model. The empirical findings uphold and validates our claims in terms of training time and accuracy using balanced and imbalanced datasets when compared to state-of-the-art approaches, such as SplitFed. FedFly has a negligible overhead of up to 2 seconds but saves a significant amount of training time while maintaining accuracy.

FedFly System width=

More information on the steps in relation to distributed FL and the mobility of devices within the FedFly system are presented in the research article entitled, "FedFly: Towards Migration in Edge-based Distributed Federated Learning".

Code Structure

The repository contains the source code of FedFly. The overall architecture is divided as follows:

  1. Central server (Central server, such as a cloud location, for running the FedAverage algorithm)
  2. Edge servers (separated as Source and Destination for migration)
  3. Devices

The repository also arranges the code according to the above described architecture.

The results are saved as pickle files in the results folder on the Central Server.

Currently, CIFAR10 dataset and Convolutional Neural Network (CNN) models are supported. The code can be extended to support other datasets and models.

Setting up the environment

The code is tested on Python 3 with Pytorch version 1.4 and torchvision 0.5.

In order to test the code, install Pytorch and torchvision on each IoT device (for example, Raspberry Pis as used in this work). One can install from pre-built PyTorch and torchvision pip wheel. Download respective pip wheel as follows:

Or visit https://github.com/Rehmatkhan/InstallPytrochScript and follow the simple steps:

# install and configure pytorch and torchvision on Raspberry devices
#move to sudo
sudo -i
#update
apt update
apt install git
git clone https://github.com/Rehmatkhan/InstallPytrochScript.git
mv InstallPytrochScript/install_python_pytorch.sh .
chmod +x install_python_pytorch.sh
rm -rf InstallPytrochScript
./install_python_pytorch.sh

All configuration options are given in config.py at the central server, which contains the architecture, model, and FL training hyperparameters. Therefore, modify the respective hostname and ip address in config.py. CLIENTS_CONFIG and CLIENTS_LIST in config.py are used for indexing and sorting. Note that config.py file must be changed at the source edge server, destination edge server and at each device.

# Network configration
SERVER_ADDR= '192.168.10.193'
SERVER_PORT = 51000
UNIT_MODEL_SERVER = '192.168.10.102'
UNIT_PORT = 51004

EDGE_SERVERS = {'Sierra.local': '192.168.10.193', 'Rehmats-MacBook-Pro.local':'192.168.10.154'}


K = 4 # Number of devices

# Unique clients order
HOST2IP = {'raspberrypi3-1':'192.168.10.93', 'raspberrypi3-2':'192.168.10.31', 'raspberrypi4-1': '192.168.10.169', 'raspberrypi4-2': '192.168.10.116'}
CLIENTS_CONFIG= {'192.168.10.93':0, '192.168.10.31':1, '192.168.10.169':2, '192.168.10.116':3 }
CLIENTS_LIST= ['192.168.10.93', '192.168.10.31', '192.168.10.169', '192.168.10.116'] 

Finally, download the CIFAR10 datasets manually and put them into the datasets/CIFAR10 folder (python version).

To test the code:

Launch FedFly central server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly source edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly destination edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly devices

python FedFly_clientrun.py --offload True #FedFly training

Citation

Please cite the paper as follows: Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence and Blesson Varghese, "FedFly: Towards Migration in Edge-based Distributed Federated Learning", 2021.

@misc{ullah2021fedfly,
      title={FedFly: Towards Migration in Edge-based Distributed Federated Learning}, 
      author={Rehmat Ullah and Di Wu and Paul Harvey and Peter Kilpatrick and Ivor Spence and Blesson Varghese},
      year={2021},
      eprint={2111.01516},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}
Owner
qub-blesson
qub-blesson
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022