Migration of Edge-based Distributed Federated Learning

Related tags

Deep LearningFedFly
Overview

FedFly: Towards Migration in Edge-based Distributed Federated Learning

About the research

Due to mobility, a device participating in Federated Learning (FL) may disconnect from one edge server and will need to connect to another edge server during FL training. This becomes more challenging when a Deep Neural Network (DNN) is partitioned between device and edge server referred to as edge-based FL. Moving a device without migrating the accompanying training data from a source edge server to the destination edge server will result in training for the device having to start all over again on the destination server. This will in turn affect the performance of edge-based FL and result in large training times. FedFly addresses the mobility challenge of devices in edge-based distributed FL. This research designs, develops and implements the technique for migrating DNN in the context of edge-based distributed FL.

FedFly is implemented and evaluated in a hierarchical cloud-edge-device architecture on a lab-based testbed to validate the migration technique of edge-based FL. The testbed that includes four IoT devices, two edge servers, and one central server (cloud-like) running the VGG-5 DNN model. The empirical findings uphold and validates our claims in terms of training time and accuracy using balanced and imbalanced datasets when compared to state-of-the-art approaches, such as SplitFed. FedFly has a negligible overhead of up to 2 seconds but saves a significant amount of training time while maintaining accuracy.

FedFly System width=

More information on the steps in relation to distributed FL and the mobility of devices within the FedFly system are presented in the research article entitled, "FedFly: Towards Migration in Edge-based Distributed Federated Learning".

Code Structure

The repository contains the source code of FedFly. The overall architecture is divided as follows:

  1. Central server (Central server, such as a cloud location, for running the FedAverage algorithm)
  2. Edge servers (separated as Source and Destination for migration)
  3. Devices

The repository also arranges the code according to the above described architecture.

The results are saved as pickle files in the results folder on the Central Server.

Currently, CIFAR10 dataset and Convolutional Neural Network (CNN) models are supported. The code can be extended to support other datasets and models.

Setting up the environment

The code is tested on Python 3 with Pytorch version 1.4 and torchvision 0.5.

In order to test the code, install Pytorch and torchvision on each IoT device (for example, Raspberry Pis as used in this work). One can install from pre-built PyTorch and torchvision pip wheel. Download respective pip wheel as follows:

Or visit https://github.com/Rehmatkhan/InstallPytrochScript and follow the simple steps:

# install and configure pytorch and torchvision on Raspberry devices
#move to sudo
sudo -i
#update
apt update
apt install git
git clone https://github.com/Rehmatkhan/InstallPytrochScript.git
mv InstallPytrochScript/install_python_pytorch.sh .
chmod +x install_python_pytorch.sh
rm -rf InstallPytrochScript
./install_python_pytorch.sh

All configuration options are given in config.py at the central server, which contains the architecture, model, and FL training hyperparameters. Therefore, modify the respective hostname and ip address in config.py. CLIENTS_CONFIG and CLIENTS_LIST in config.py are used for indexing and sorting. Note that config.py file must be changed at the source edge server, destination edge server and at each device.

# Network configration
SERVER_ADDR= '192.168.10.193'
SERVER_PORT = 51000
UNIT_MODEL_SERVER = '192.168.10.102'
UNIT_PORT = 51004

EDGE_SERVERS = {'Sierra.local': '192.168.10.193', 'Rehmats-MacBook-Pro.local':'192.168.10.154'}


K = 4 # Number of devices

# Unique clients order
HOST2IP = {'raspberrypi3-1':'192.168.10.93', 'raspberrypi3-2':'192.168.10.31', 'raspberrypi4-1': '192.168.10.169', 'raspberrypi4-2': '192.168.10.116'}
CLIENTS_CONFIG= {'192.168.10.93':0, '192.168.10.31':1, '192.168.10.169':2, '192.168.10.116':3 }
CLIENTS_LIST= ['192.168.10.93', '192.168.10.31', '192.168.10.169', '192.168.10.116'] 

Finally, download the CIFAR10 datasets manually and put them into the datasets/CIFAR10 folder (python version).

To test the code:

Launch FedFly central server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly source edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly destination edge server

python FedFly_serverrun.py --offload True #FedFly training

Launch FedFly devices

python FedFly_clientrun.py --offload True #FedFly training

Citation

Please cite the paper as follows: Rehmat Ullah, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence and Blesson Varghese, "FedFly: Towards Migration in Edge-based Distributed Federated Learning", 2021.

@misc{ullah2021fedfly,
      title={FedFly: Towards Migration in Edge-based Distributed Federated Learning}, 
      author={Rehmat Ullah and Di Wu and Paul Harvey and Peter Kilpatrick and Ivor Spence and Blesson Varghese},
      year={2021},
      eprint={2111.01516},
      archivePrefix={arXiv},
      primaryClass={cs.DC}
}
Owner
qub-blesson
qub-blesson
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Rax is a Learning-to-Rank library written in JAX

đŸ¦– Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023