SAS: Self-Augmentation Strategy for Language Model Pre-training

Overview

SAS: Self-Augmentation Strategy for Language Model Pre-training

This repository contains the official pytorch implementation for the paper "SAS: Self-Augmentation Strategy for Language Model Pre-training" based on Huggingface transformers version 4.3.0.

Only the SAS without the disentangled attention mechanism is released for now. To be updated.

graph

File structure

  • train.py: The file for pre-training.
  • run_glue.py: The file for finetuning.
  • models
    • modeling_sas.py: The main algorithm for the SAS.
    • trainer_sas.py: It is inherited from Huggingface transformers. It is mainly modified for data processing.
  • utils: It includes all the utilities.
    • data_collator_sas.py: It includes the details about self-augmentations.
  • The rest of codes are supportive.

How to

Download and Install

  • Clone this repository.
  • Download dataset for wiki-corpus. Store it to data folder. Currently, we only provide a trail data with 1 million sentence. Full dataset can be pre-processed according to BERT. Detail to be released.
  • (Optional) Create an environment through conda by the provided environment.yml
    • You can also manually install the package:
      • Python==3.9, pytorch==1.10.0, transformers==4.3.0, etc.
    # Clone package
    git clone [email protected]:fei960922/SAS-Self-Augmentation-Strategy.git
    cd SAS-Self-Augmentation-Strategy

    # Establish the environment.
    conda env create -f environment.yml 
    conda activate cssl

    # Download dataset and checkpoint
    wget http://www.stat.ucla.edu/~yifeixu/sas/wiki_corpus_1M.npy

Train from stractch

    # Run default setting 
    bash script/pretrain.sh

    # Run custom setting
    python train.py

    # Starting from checkpoint 
    python train.py --start_from_checkpoint 1 --pretrain_path {PATH_TH_CHECKPOINT}

Caclulate GLUE scores

    # By running this bash, GLUE dataset will be automatically downloaded.
    bash finetune.sh MNLI 0 sas-base output_dir 5e-5 32 4 42
    bash finetune.sh MNLI 0 sas-small output_dir 1e-4 32 4 42
Owner
Alibaba
Alibaba Open Source
Alibaba
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023