Facilitates implementing deep neural-network backbones, data augmentations

Overview

Introduction

Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common way was to find a repo and reimplement them. Thus, it is really hard for them to speed up the implementation of a big project in which requires a continuous try-end-error process to find the best model. general_backbone is launched to facilitate for implementation of deep neural-network backbones, data augmentations, optimizers, and learning schedulers that all in one package. Finally, you can quick-win the training process. Below are these supported sectors in the current version:

  • backbones
  • loss functions
  • augumentation styles
  • optimizers
  • schedulers
  • data types
  • visualizations

Installation

Refer to docs/installation.md for installion of general_backbone package.

Model backbone

Currently, general_backbone supports more than 70 type of resnet models such as: resnet18, resnet34, resnet50, resnet101, resnet152, resnext50.

All models is supported can be found in general_backbone.list_models() function:

import general_backbone
general_backbone.list_models()

Results

{'resnet': ['resnet18', 'resnet18d', 'resnet34', 'resnet34d', 'resnet26', 'resnet26d', 'resnet26t', 'resnet50', 'resnet50d', 'resnet50t', 'resnet101', 'resnet101d', 'resnet152', 'resnet152d', 'resnet200', 'resnet200d', 'tv_resnet34', 'tv_resnet50', 'tv_resnet101', 'tv_resnet152', 'wide_resnet50_2', 'wide_resnet101_2', 'resnext50_32x4d', 'resnext50d_32x4d', 'resnext101_32x4d', 'resnext101_32x8d', 'resnext101_64x4d', 'tv_resnext50_32x4d', 'ig_resnext101_32x8d', 'ig_resnext101_32x16d', 'ig_resnext101_32x32d', 'ig_resnext101_32x48d', 'ssl_resnet18', 'ssl_resnet50', 'ssl_resnext50_32x4d', 'ssl_resnext101_32x4d', 'ssl_resnext101_32x8d', 'ssl_resnext101_32x16d', 'swsl_resnet18', 'swsl_resnet50', 'swsl_resnext50_32x4d', 'swsl_resnext101_32x4d', 'swsl_resnext101_32x8d', 'swsl_resnext101_32x16d', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet50t', 'seresnet101', 'seresnet152', 'seresnet152d', 'seresnet200d', 'seresnet269d', 'seresnext26d_32x4d', 'seresnext26t_32x4d', 'seresnext50_32x4d', 'seresnext101_32x4d', 'seresnext101_32x8d', 'senet154', 'ecaresnet26t', 'ecaresnetlight', 'ecaresnet50d', 'ecaresnet50d_pruned', 'ecaresnet50t', 'ecaresnet101d', 'ecaresnet101d_pruned', 'ecaresnet200d', 'ecaresnet269d', 'ecaresnext26t_32x4d', 'ecaresnext50t_32x4d', 'resnetblur18', 'resnetblur50', 'resnetrs50', 'resnetrs101', 'resnetrs152', 'resnetrs200', 'resnetrs270', 'resnetrs350', 'resnetrs420']}

To select your backbone type, you set model=resnet50 in train_config of your config file. An example config file general_backbone/configs/image_clf_config.py.

Dataset

A toy dataset is provided at toydata for your test training. It has a structure organized as below:

toydata/
└── image_classification
    ├── test
    │   ├── cat
    │   └── dog
    └── train
        ├── cat
        └── dog

Inside each folder cat and dog is the images. If you want to add a new class, you just need to create a new folder with the folder's name is label name inside train and test folder.

Data Augmentation

general_backbone package support many augmentations style for training. It is efficient and important to improve model accuracy. Some of common augumentations is below:

Augumentation Style Parameters Description
Pixel-level transforms
Blur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a random-sized kernel
GaussNoise {'var_limit':(10.0, 50.0), 'mean':0, 'per_channel':True, 'always_apply':False, 'p':0.5} Apply gaussian noise to the input image
GaussianBlur {'blur_limit':(3, 7), 'sigma_limit':0, 'always_apply':False, 'p':0.5} Blur the input image using a Gaussian filter with a random kernel size
GlassBlur {'sigma': 0.7, 'max_delta':4, 'iterations':2, 'always_apply':False, 'mode':'fast', 'p':0.5} Apply glass noise to the input image
HueSaturationValue {'hue_shift_limit':20, 'sat_shift_limit':30, 'val_shift_limit':20, 'always_apply':False, 'p':0.5} Randomly change hue, saturation and value of the input image
MedianBlur {'blur_limit':7, 'always_apply':False, 'p':0.5} Blur the input image using a median filter with a random aperture linear size
RGBShift {'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5} Randomly shift values for each channel of the input RGB image.
Normalize {'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)} Normalization is applied by the formula: img = (img - mean * max_pixel_value) / (std * max_pixel_value)
Spatial-level transforms
RandomCrop {'height':128, 'width':128} Crop a random part of the input
VerticalFlip {'p': 0.5} Flip the input vertically around the x-axis
ShiftScaleRotate {'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5} Randomly apply affine transforms: translate, scale and rotate the input
RandomBrightnessContrast {'brightness_limit':0.2, 'contrast_limit':0.2, 'brightness_by_max':True, 'always_apply':False,'p': 0.5} Randomly change brightness and contrast of the input image

Augumentation is configured in the configuration file general_backbone/configs/image_clf_config.py:

data_conf = dict(
    dict_transform = dict(
        SmallestMaxSize={'max_size': 160},
        ShiftScaleRotate={'shift_limit':0.05, 'scale_limit':0.05, 'rotate_limit':15, 'p':0.5},
        RandomCrop={'height':128, 'width':128},
        RGBShift={'r_shift_limit': 15, 'g_shift_limit': 15, 'b_shift_limit': 15, 'p': 0.5},
        RandomBrightnessContrast={'p': 0.5},
        Normalize={'mean':(0.485, 0.456, 0.406), 'std':(0.229, 0.224, 0.225)},
        ToTensorV2={'always_apply':True}
    )
)

You can add a new transformation step in data_conf['dict_transform'] and they are transformed in order from top-down. You can also debug your transformation by setup debug=True:

from general_backbone.data import AugmentationDataset
augdataset = AugmentationDataset(data_dir='toydata/image_classification',
                            name_split='train',
                            config_file = 'general_backbone/configs/image_clf_config.py', 
                            dict_transform=None, 
                            input_size=(256, 256), 
                            debug=True, 
                            dir_debug = 'tmp/alb_img_debug', 
                            class_2_idx=None)

for i in range(50):
    img, label = augdataset.__getitem__(i)

In default, the augmentation images output is saved in tmp/alb_img_debug to you review before train your models. the code tests augmentation image is available in debug/transform_debug.py:

conda activate gen_backbone
python debug/transform_debug.py

Train model

To train model, you run file tools/train.py. There are variaty of config for your training such as --model, --batch_size, --opt, --loss, --sched. We supply to you a standard configuration file to train your model through --config. general_backbone/configs/image_clf_config.py is for image classification task. You can change value inside this file or add new parameter as you want but without changing the name and structure of file.

python3 tools/train.py --config general_backbone/configs/image_clf_config.py

Results:

Model resnet50 created, param count:25557032
Train: 0 [   0/33 (  0%)]  Loss: 8.863 (8.86)  Time: 1.663s,    9.62/s  (1.663s,    9.62/s)  LR: 5.000e-04  Data: 0.460 (0.460)
Train: 0 [  32/33 (100%)]  Loss: 1.336 (4.00)  Time: 0.934s,    8.57/s  (0.218s,   36.68/s)  LR: 5.000e-04  Data: 0.000 (0.014)
Test: [   0/29]  Time: 0.560 (0.560)  Loss:  0.6912 (0.6912)  [email protected]: 87.5000 (87.5000)  [email protected]: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.041 (0.064)  Loss:  0.5951 (0.5882)  [email protected]: 81.2500 (87.5000)  [email protected]: 100.0000 (99.3750)
Train: 1 [   0/33 (  0%)]  Loss: 0.5741 (0.574)  Time: 0.645s,   24.82/s  (0.645s,   24.82/s)  LR: 5.000e-04  Data: 0.477 (0.477)
Train: 1 [  32/33 (100%)]  Loss: 0.5411 (0.313)  Time: 0.089s,   90.32/s  (0.166s,   48.17/s)  LR: 5.000e-04  Data: 0.000 (0.016)
Test: [   0/29]  Time: 0.537 (0.537)  Loss:  0.3071 (0.3071)  [email protected]: 87.5000 (87.5000)  [email protected]: 100.0000 (100.0000)
Test: [  29/29]  Time: 0.043 (0.066)  Loss:  0.1036 (0.1876)  [email protected]: 100.0000 (93.9583)  [email protected]: 100.0000 (100.0000)

Table of config parameters is in training.

Your model checkpoint and log are saved in the same path of --output directory. A tensorboard visualization is created in order to facilitate manage and control training process. As default, folder of tensorboard is runs that insides --output. The loss, accuracy, learning rate and batch time on both train and test are logged:

tensorboard --logdir checkpoint/resnet50/20211023-092651-resnet50-224/runs/

Inference

To inference model, you can pass relevant values to --img, --config and --initial-checkpoint.

python tools/inference.py --img demo/cat0.jpg --config general_backbone/configs/image_clf_config.py --initial-checkpoint checkpoint.pth.tar

TODO

Packages reference:

There are many open sources package we refered to build up general_backbone:

  • timm: PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

  • albumentations: is a Python library for image augmentation.

  • mmcv: MMCV is a foundational library for computer vision research and supports many research projects.

Citation

If you find this project is useful in your reasearch, kindly consider cite:

@article{genearal_backbone,
    title={GeneralBackbone:  A handy package for implementing Deep Learning Backbone},
    author={khanhphamdinh},
    email= {[email protected]},
    year={2021}
}
You might also like...
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Releases(v0.2.1)
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022