A python library for implementing a recommender system

Overview

python-recsys

A python library for implementing a recommender system.

Installation

Dependencies

python-recsys is build on top of Divisi2, with csc-pysparse (Divisi2 also requires NumPy, and uses Networkx).

python-recsys also requires SciPy.

To install the dependencies do something like this (Ubuntu):

sudo apt-get install python-scipy python-numpy
sudo apt-get install python-pip
sudo pip install csc-pysparse networkx divisi2

# If you don't have pip installed then do:
# sudo easy_install csc-pysparse
# sudo easy_install networkx
# sudo easy_install divisi2

Download

Download python-recsys from github.

Install

tar xvfz python-recsys.tar.gz
cd python-recsys
sudo python setup.py install

Example

  1. Load Movielens dataset:
from recsys.algorithm.factorize import SVD
svd = SVD()
svd.load_data(filename='./data/movielens/ratings.dat',
            sep='::',
            format={'col':0, 'row':1, 'value':2, 'ids': int})
  1. Compute Singular Value Decomposition (SVD), M=U Sigma V^t:
k = 100
svd.compute(k=k,
            min_values=10,
            pre_normalize=None,
            mean_center=True,
            post_normalize=True,
            savefile='/tmp/movielens')
  1. Get similarity between two movies:
ITEMID1 = 1    # Toy Story (1995)
ITEMID2 = 2355 # A bug's life (1998)

svd.similarity(ITEMID1, ITEMID2)
# 0.67706936677315799
  1. Get movies similar to Toy Story:
svd.similar(ITEMID1)

# Returns: <ITEMID, Cosine Similarity Value>
[(1,    0.99999999999999978), # Toy Story
 (3114, 0.87060391051018071), # Toy Story 2
 (2355, 0.67706936677315799), # A bug's life
 (588,  0.5807351496754426),  # Aladdin
 (595,  0.46031829709743477), # Beauty and the Beast
 (1907, 0.44589398718134365), # Mulan
 (364,  0.42908159895574161), # The Lion King
 (2081, 0.42566581277820803), # The Little Mermaid
 (3396, 0.42474056361935913), # The Muppet Movie
 (2761, 0.40439361857585354)] # The Iron Giant
  1. Predict the rating a user (USERID) would give to a movie (ITEMID):
MIN_RATING = 0.0
MAX_RATING = 5.0
ITEMID = 1
USERID = 1

svd.predict(ITEMID, USERID, MIN_RATING, MAX_RATING)
# Predicted value 5.0

svd.get_matrix().value(ITEMID, USERID)
# Real value 5.0
  1. Recommend (non-rated) movies to a user:
svd.recommend(USERID, is_row=False) #cols are users and rows are items, thus we set is_row=False

# Returns: <ITEMID, Predicted Rating>
[(2905, 5.2133848204673416), # Shaggy D.A., The
 (318,  5.2052108435956033), # Shawshank Redemption, The
 (2019, 5.1037438278755474), # Seven Samurai (The Magnificent Seven)
 (1178, 5.0962756861447023), # Paths of Glory (1957)
 (904,  5.0771405690055724), # Rear Window (1954)
 (1250, 5.0744156653222436), # Bridge on the River Kwai, The
 (858,  5.0650911066862907), # Godfather, The
 (922,  5.0605327279819408), # Sunset Blvd.
 (1198, 5.0554543765500419), # Raiders of the Lost Ark
 (1148, 5.0548789542105332)] # Wrong Trousers, The
  1. Which users should see Toy Story? (e.g. which users -that have not rated Toy Story- would give it a high rating?)
svd.recommend(ITEMID)

# Returns: <USERID, Predicted Rating>
[(283,  5.716264440514446),
 (3604, 5.6471765418323141),
 (5056, 5.6218800339214496),
 (446,  5.5707524860615738),
 (3902, 5.5494529168484652),
 (4634, 5.51643364021289),
 (3324, 5.5138903299082802),
 (4801, 5.4947999354188548),
 (1131, 5.4941438045650068),
 (2339, 5.4916048051511659)]

Documentation

Documentation and examples available here.

To create the HTML documentation files from doc/source do:

cd doc
make html

HTML files are created here:

doc/build/html/index.html
Owner
Oscar Celma
I used to code. Now I barely remember how to do it
Oscar Celma
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022