A python library for implementing a recommender system

Overview

python-recsys

A python library for implementing a recommender system.

Installation

Dependencies

python-recsys is build on top of Divisi2, with csc-pysparse (Divisi2 also requires NumPy, and uses Networkx).

python-recsys also requires SciPy.

To install the dependencies do something like this (Ubuntu):

sudo apt-get install python-scipy python-numpy
sudo apt-get install python-pip
sudo pip install csc-pysparse networkx divisi2

# If you don't have pip installed then do:
# sudo easy_install csc-pysparse
# sudo easy_install networkx
# sudo easy_install divisi2

Download

Download python-recsys from github.

Install

tar xvfz python-recsys.tar.gz
cd python-recsys
sudo python setup.py install

Example

  1. Load Movielens dataset:
from recsys.algorithm.factorize import SVD
svd = SVD()
svd.load_data(filename='./data/movielens/ratings.dat',
            sep='::',
            format={'col':0, 'row':1, 'value':2, 'ids': int})
  1. Compute Singular Value Decomposition (SVD), M=U Sigma V^t:
k = 100
svd.compute(k=k,
            min_values=10,
            pre_normalize=None,
            mean_center=True,
            post_normalize=True,
            savefile='/tmp/movielens')
  1. Get similarity between two movies:
ITEMID1 = 1    # Toy Story (1995)
ITEMID2 = 2355 # A bug's life (1998)

svd.similarity(ITEMID1, ITEMID2)
# 0.67706936677315799
  1. Get movies similar to Toy Story:
svd.similar(ITEMID1)

# Returns: <ITEMID, Cosine Similarity Value>
[(1,    0.99999999999999978), # Toy Story
 (3114, 0.87060391051018071), # Toy Story 2
 (2355, 0.67706936677315799), # A bug's life
 (588,  0.5807351496754426),  # Aladdin
 (595,  0.46031829709743477), # Beauty and the Beast
 (1907, 0.44589398718134365), # Mulan
 (364,  0.42908159895574161), # The Lion King
 (2081, 0.42566581277820803), # The Little Mermaid
 (3396, 0.42474056361935913), # The Muppet Movie
 (2761, 0.40439361857585354)] # The Iron Giant
  1. Predict the rating a user (USERID) would give to a movie (ITEMID):
MIN_RATING = 0.0
MAX_RATING = 5.0
ITEMID = 1
USERID = 1

svd.predict(ITEMID, USERID, MIN_RATING, MAX_RATING)
# Predicted value 5.0

svd.get_matrix().value(ITEMID, USERID)
# Real value 5.0
  1. Recommend (non-rated) movies to a user:
svd.recommend(USERID, is_row=False) #cols are users and rows are items, thus we set is_row=False

# Returns: <ITEMID, Predicted Rating>
[(2905, 5.2133848204673416), # Shaggy D.A., The
 (318,  5.2052108435956033), # Shawshank Redemption, The
 (2019, 5.1037438278755474), # Seven Samurai (The Magnificent Seven)
 (1178, 5.0962756861447023), # Paths of Glory (1957)
 (904,  5.0771405690055724), # Rear Window (1954)
 (1250, 5.0744156653222436), # Bridge on the River Kwai, The
 (858,  5.0650911066862907), # Godfather, The
 (922,  5.0605327279819408), # Sunset Blvd.
 (1198, 5.0554543765500419), # Raiders of the Lost Ark
 (1148, 5.0548789542105332)] # Wrong Trousers, The
  1. Which users should see Toy Story? (e.g. which users -that have not rated Toy Story- would give it a high rating?)
svd.recommend(ITEMID)

# Returns: <USERID, Predicted Rating>
[(283,  5.716264440514446),
 (3604, 5.6471765418323141),
 (5056, 5.6218800339214496),
 (446,  5.5707524860615738),
 (3902, 5.5494529168484652),
 (4634, 5.51643364021289),
 (3324, 5.5138903299082802),
 (4801, 5.4947999354188548),
 (1131, 5.4941438045650068),
 (2339, 5.4916048051511659)]

Documentation

Documentation and examples available here.

To create the HTML documentation files from doc/source do:

cd doc
make html

HTML files are created here:

doc/build/html/index.html
Owner
Oscar Celma
I used to code. Now I barely remember how to do it
Oscar Celma
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023