LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

Overview

LWCC: A LightWeight Crowd Counting library for Python

LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models all based on convolutional neural networks: CSRNet, Bayesian crowd counting, DM-Count, and SFANet. The library is based on PyTorch.

Installation

The easiest way to install library LWCC and its prerequisites is to use the package manager pip.

pip install lwcc

Usage

You can import the library and use its functionalities by:

from lwcc import LWCC

Count estimation

Most straightforward way to use the library:

img = "path/to/image"
count = LWCC.get_count(img)

This uses CSRNet pretrained on SHA (default). You can choose a different model pretrained on different data set using:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB")

The result is a float with predicted count.

Large images

Note: By default all images are resized such that the longest side is less than 1000px, preserving the aspect ratio. Otherwise models might perform worse for large images with sparse crowds (counting patterns on shirts, dresses). If you are estimating dense crowds, we recommend you to set the resize_img to False. The call should look like this:

count = LWCC.get_count(img, model_name = "DM-Count", model_weights = "SHB", resize_img = True)

Multiple images

Library allows prediction of count for multiple images with a single call of get_count. You can simply pass a list of image paths:

img1 = "path/to/image1"
img2 = "path/to/image2"
count = LWCC.get_count([img1, img2])

Result is then a dictionary of pairs image_name : image_count: result

Density map

You can also request a density map by setting flag return_density = True. The result is then a tuple (count, density_map), where density_map is a 2d array with predicted densities. The array is smaller than the input image and its size depends on the model.

import matplotlib.pyplot as plt

count, density = LWCC.get_count(img, return_density = True)

plt.imshow(density)
plt.show()

result_density

This also works for multiple images (list of image paths as input). Result is then a tuple of two dictionaries, where the first dictionary is the same as above (pairs of image_name : image_count) and the second dictionary contains pairs of image_name : density_map.

Loading the model

You can also directly access the PyTorch models by loading them first with the load_model method.

model = LWCC.load_model(model_name = "DM-Count", model_weights = "SHA")

The loaded model is a PyTorch model and you can access its weights as with any other PyTorch model.

You can use it for inference as:

 count = LWCC.get_count(img, model = model)

Models

LWCC currently offers 4 models (CSRNet, Bayesian crowd counting, DM-Count, SFANet) pretrained on Shanghai A, Shanghai B, and UCF-QNRF datasets. The following table shows the model name and MAE / MSE result of the available pretrained models on the test sets.

Model name SHA SHB QNRF
CSRNet 75.44 / 113.55 11.27 / 19.32 Not available
Bay 66.92 / 112.07 8.27 / 13.56 90.43 / 161.41
DM-Count 61.39 / 98.56 7.68 / 12.66 88.97 / 154.11
SFANet Not available 7.05 / 12.18 Not available

Valid options for model_name are written in the first column and thus include: CSRNet, Bay, DM-Count, and SFANet. Valid options for model_weights are written in the first row and thus include: SHA, SHB, and QNRF.

Note: Not all model_weights are supported with all model_names. See the above table for possible combinations.

How does it work?

The goal of crowd counting methods is to determine the number of people present in a particular area. There exist many approaches (detection, regression, density-based approaches), however, since 2015 many convolutional neural network (CNN) based approaches have been proposed. The basic idea behind CNN based approaches is that they normally try to predict the density map from the input image and infer the count from it. These models differ in the use of different backbones, loss functions, additional maps, etc. If you are interested in a particular algorithm, you are welcome to read the paper belonging to the specific model.

FAQ - Frequently asked questions

Can I see some more examples of LWCC in action?

Yes, you can find some examples in Examples.ipynb!

How accurate are the models?

You can see the mean absolute error (MAE) and mean squared error (MSE) of the pretrained models on test sets in section models. We recommend models pretrained on SHA or QNRF for dense crowds, and SHB for sparse crowds.

Is GPU support available?

No, GPU support is currently not supported yet, but is planned for the future version.

Can I load custom weights?

Full support of loading custom pretrained weights is not supported, but is planned in the future version.

Can I train the models myself?

The library does not support training, only inference.

Why are my results bad?

This might depend on the model you use, image size, density or type of the crowd, or the weights that you use. For example, models might often make mistakes for images with a group portrait, as they are trained on images containing crowds on streets, concerts, etc. Using SHAweights on relatively sparse crowds might also give very wrong results. On the other hand, SHB might perform better as the weights were trained on Shanghai B data set, which containts images with relatively sparse crowds. Using high quality images with sparse crowds might also yield bad results, as the algorithms might mistake some textures of clothings for a crowd.

As a rule of thumb, you should use SHB if you are planning on estimating the number of people in images with sparse crowds, and SHA or QNRF for images with dense crowds. Keep in mind that current algorithms predict the density, and there still might be some mistakes. You are welcome to try out different combinations of models and weights and see which one works the best for your problem.

Support

If you like the library please show us your support by ⭐️ starring the project!

If you wish to include your own crowd counting model, please contact us ([email protected] or [email protected]).

Stargazers

Stargazers repo roster for @tersekmatija/lwcc

Citation

This library is a result of a research of CNN Crowd Counting models by Matija Teršek and Maša Kljun. Although the paper has not been published yet, please provide the link to this GitHub repository if you use LWCC in your research.

License

This library is licensed under MIT license (see LICENSE). Licenses of the models wrapped in the library will be inherited, depending on the model you use ( CSRNet, Bayesian crowd counting, DM-Count, and SFANet).

Owner
Matija Teršek
Data Science Master's student
Matija Teršek
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022