SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

Overview

SurfEmb

SurfEmb: Dense and Continuous Correspondence Distributions
for Object Pose Estimation with Learnt Surface Embeddings

Rasmus Laurvig Haugard, Anders Glent Buch
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2022
pre-print | project-site

The easiest way to explore correspondence distributions is through the project site.

The following describes how to reproduce the results.

Install

Download surfemb:

$ git clone https://github.com/rasmushaugaard/surfemb.git
$ cd surfemb

All following commands are expected to be run in the project root directory.

Install conda , create a new environment, surfemb, and activate it:

$ conda env create -f environment.yml
$ conda activate surfemb

Download BOP data

Download and extract datasets from the BOP site. Base archive, and object models are needed for both training and inference. For training, PBR-BlenderProc4BOP training images are needed as well, and for inference, the BOP'19/20 test images are needed.

Extract the datasets under data/bop (or make a symbolic link).

Model

Download a trained model (see releases):

$ wget https://github.com/rasmushaugaard/surfemb/releases/download/v0.0.1/tless-2rs64lwh.compact.ckpt -P data/models

OR

Train a model:

$ python -m surfemb.scripts.train [dataset] --gpus [gpu ids]

For example, to train a model on T-LESS on cuda:0

$ python -m surfemb.scripts.train tless --gpus 0

Inference data

We use the detections from CosyPose's MaskRCNN models, and sample surface points evenly for inference.
For ease of use, this data can be downloaded and extracted as follows:

$ wget https://github.com/rasmushaugaard/surfemb/releases/download/v0.0.1/inference_data.zip
$ unzip inference_data.zip

OR

Extract detections and sample surface points

Surface samples

First, flip the normals of ITODD object 18, which is inside out.

Then remove invisible parts of the objects

$ python -m surfemb.scripts.misc.surface_samples_remesh_visible [dataset] 

sample points evenly from the mesh surface

$ python -m surfemb.scripts.misc.surface_samples_sample_even [dataset] 

and recover the normals for the sampled points.

$ python -m surfemb.scripts.misc.surface_samples_recover_normals [dataset] 

Detection results

Download CosyPose in the same directory as SurfEmb was downloaded in, install CosyPose and follow their guide to download their BOP-trained detection results. Then:

$ python -m surfemb.scripts.misc.load_detection_results [dataset]

Inference inspection

To see pose estimation examples on the training images run

$ python -m surfemb.scripts.infer_debug [model_path] --device [device]

[device] could for example be cuda:0 or cpu.

Add --real to use the test images with simulated crops based on the ground truth poses, or further add --detections to use the CosyPose detections.

Inference for BOP evaluation

Inference is run on the (real) test images with CosyPose detections:

$ python -m surfemb.scripts.infer [model_path] --device [device]

Pose estimation results are saved to data/results.
To obtain results with depth (requires running normal inference first), run

$ python -m surfemb.scripts.infer_refine_depth [model_path] --device [device]

The results can be formatted for BOP evaluation using

$ python -m surfemb.scripts.misc.format_results_for_eval [poses_path]

Either upload the formatted results to the BOP Challenge website or evaluate using the BOP toolkit.

Extra

Custom dataset: Format the dataset as a BOP dataset and put it in data/bop.

Comments
  • Custom dataset

    Custom dataset

    If I want to train my datasets(texture-less), which has 4 classes.

    First, how should I train the 2D detector? And MaskRCNN or Retinanet?

    Second, in surfemb, What parameters should I modify?

    Can you give me some advice? Thanks~

    opened by woodcore-an 25
  • Question about inference data

    Question about inference data

    For some strange reason wget does not download data to the correct place on my machine, so I downloaded the inference_data.zip file manually. I am now unsure where to extract its contents? Would I do this in the root directory or perhaps in /data or /data/models. Thank you.

    opened by meropis 9
  • Some problems encountered when training tless

    Some problems encountered when training tless

    I downloaded the tless on bop and put it under data/bop/tless, the code can load the cad models , i use python -m surfemb.scripts.train tless --gpus 0 to run, but it runs to After trainer.fit, the following error will occur: TypeError: default_collate: batch must contain tensors, numpy arrays, numbers, dicts or lists; found <class 'trimesh.caching.TrackedArray'> Sorry, am I setting it wrong? image

    opened by transcend-lzy 6
  • train on a custom dataset

    train on a custom dataset

    I'm trying to train surfemb on a custom dataset. But when I do inference, I find some files/dirs are musts(they're detection_results, surface_samples, surface_samples_normals). For dectection_results, I've already known it's from CosyPose, but I don't know how to generate it in detail. For surface_samples, I followed your guidance that run command $ python -m surfemb.scripts.misc.surface_samples_remesh_visible clip first. But I encountered this error:

    Traceback (most recent call last):
      File "/root/miniconda3/envs/surfemb/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/root/miniconda3/envs/surfemb/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/root/surfemb/surfemb/scripts/misc/surface_samples_remesh_visible.py", line 32, in <module>
        ms.compute_scalar_ambient_occlusion(occmode='per-Face (deprecated)', reqviews=256)
    AttributeError: 'pymeshlab.pmeshlab.MeshSet' object has no attribute 'compute_scalar_ambient_occlusion'
    

    Could you please give me any suggestions on these two problems?

    opened by LeroyChou 5
  • question about pose score.

    question about pose score.

    Hi, thank you again.

    I'm comparing the pose score you proposed in paper and implemented in codes such that I encounter some questions.

    1. In this line you calculate neg_mask_log_prob by inversing mask_lgts before feeding it into the logsigmoid. why do you inverse mask_lgts? Does it actually mean anything?
    2. Can I think of the pose score as confidence as long as I map its value to [0, 1] via a kind of mono-increasing function?
    opened by LeroyChou 4
  • scores in resulst and bop19_average_recall

    scores in resulst and bop19_average_recall

    Question 1:I used ycbv-jwpvdij1.compact.ckpt(a trained model that you provided) to infer test datasets in ycbv(python -m surfemb.scripts.infer), then python -m surfemb.scripts.misc.format_results_for_eval, the score in results all is negative, for example,-0.339 , -0.401.Is that normal? image A:scene_id B:img_id C:est_obj_id D: score.

    opened by cats0212 4
  • TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

    TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

    when i want to train the tless python -m surfemb.scripts.train tless:

    Traceback (most recent call last):
      File "/home/zzz/miniconda3/envs/surfemb/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/home/zzz/miniconda3/envs/surfemb/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/home/zzz/github/surfemb/surfemb/scripts/train.py", line 121, in <module>
        main()
      File "/home/zzz/github/surfemb/surfemb/scripts/train.py", line 61, in main
        model = SurfaceEmbeddingModel(n_objs=len(obj_ids), **vars(args))
      File "/home/zzz/github/surfemb/surfemb/surface_embedding.py", line 48, in __init__
        n_class=(emb_dim + 1) if separate_decoders else n_objs * (emb_dim + 1),
    TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'
    

    It Seems the emb_dim is None. But it has the default value emb_dim=12.

    opened by woodcore-an 4
  • 2080ti one gpu gives out of memory error while training

    2080ti one gpu gives out of memory error while training

    Hi, thanks for your great work, I hope I will make it work and be able to use it on my custom dataset. my problem is this; I have one 2080ti and I am trying to train the tless pbr dataset but I get an error "cuda out of memory" . I have used smaller batch size which is 8, I have decreased the number of workers to 0. but it keeps giving the error ( ok now it gives the error later than before but it still gives the error)

    it only works if I decrease the scenes from 50 to 1 in train_pbr folder. otherwise no chance.

    is this normal behavior with this one gpu , or I am missing something

    thanks in advance Screenshot from 2022-06-13 11-00-50

    opened by smoothumut 3
  • cannot import name 'egl' from 'glcontext'

    cannot import name 'egl' from 'glcontext'

    I have tried to run the Inference Inspection code in my windows machine with the given inference data as proposed in the README but I got the error:

    $ python -m surfemb.scripts.infer_debug data/models/tless-2rs64lwh.compact.ckpt --device cpu
    loading objects: 0it [00:00, ?it/s]
    Traceback (most recent call last):
      File "C:\Users\39331\anaconda3\envs\surfemb\lib\runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "C:\Users\39331\anaconda3\envs\surfemb\lib\runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "C:\Users\39331\Documenti\Final Year Project\surfemb\surfemb\scripts\infer_debug.py", line 43, in <module>
        renderer = ObjCoordRenderer(objs, res_crop)
      File "C:\Users\39331\Documenti\Final Year Project\surfemb\surfemb\data\renderer.py", line 43, in __init__
        self.ctx = moderngl.create_context(standalone=True, backend='egl', device_index=device_idx)
      File "C:\Users\39331\anaconda3\envs\surfemb\lib\site-packages\moderngl\context.py", line 1619, in create_context
        ctx.mglo, ctx.version_code = mgl.create_context(glversion=require, mode=mode, **settings)
      File "C:\Users\39331\anaconda3\envs\surfemb\lib\site-packages\glcontext\__init__.py", line 49, in get_backend_by_name
        return _egl()
      File "C:\Users\39331\anaconda3\envs\surfemb\lib\site-packages\glcontext\__init__.py", line 106, in _egl
        from glcontext import egl
    ImportError: cannot import name 'egl' from 'glcontext' (C:\Users\39331\anaconda3\envs\surfemb\lib\site-packages\glcontext\__init__.py)
    

    I have tried installing OpenGL again but it did not solve the problem, I cannot find any sources for solving the dependency. How would you suggest me to solve it?

    opened by cuccomat 3
  • Wait at 0% while training.Epoch 0:       0%              0/13000

    Wait at 0% while training.Epoch 0: 0% 0/13000

    Hi, i run 'python -m surfemb.scripts.train ycbv', and ./data/bop/ycbv/models have 21 .ply files, and 80 folder in ./data/bop/ycbv/train_real. I did not use synth imgs, but the program always 0%. Is the program preprocessing image information,crop object from img?I waited a dozen hours and it was still 0%. like Epoch 0: 0%. The python is still running.Do I have to wait a long time before train model?Are you in a similar situation?

    But if I just have 3 .ply files in ./data/bop/ycba/models,and 1 folder in ./data/bop/ycbv/train_real,it will soon(3 - 4 minutes) train cnn .Finally, the trained model is obtained. For example, obj_000008.ply, obj_000014.ply, obj_000021.ply in ./data/bop/ycba/models, 000000 in ./data/bop/ycbv/train_real(imgs in 000000 only have 3 types of objects, obj_8, obj_14, obj_21).

    If I want to train all the objects in ycbv at once, Do I have to wait longer?I'm using a server, CPU performance is not weak.

    { "os": "Linux-4.15.0-175-generic-x86_64-with-debian-buster-sid", "python": "3.7.11", "heartbeatAt": "2022-04-09T09:34:05.311715", "startedAt": "2022-04-09T09:34:02.496814", "docker": null, "gpu": "GeForce RTX 3090", "gpu_count": 8, "cpu_count": 40, "cuda": null, "args": [], "state": "running", "program": "-m surfemb.scripts.train", "git": { "remote": "https://github.com/rasmushaugaard/surfemb.git", "commit": "46f46ddc5670848d696968dc8ec65c8ce62b16a8" }, "email": "[email protected]", "root": "/home/aa/prjs/surfemb", "host": "sddx-PR4908P", "username": "aa", "executable": "/home/aa/anaconda3/envs/d2_1.10/bin/python" }

    logs: 2022-04-09 11:02:46,213 INFO MainThread:16337 [wandb_setup.py:_flush():75] Loading settings from /home/aa/.config/wandb/settings 2022-04-09 11:02:46,214 INFO MainThread:16337 [wandb_setup.py:_flush():75] Loading settings from /home/aa/prjs/bcnet/pose/surfemb/wandb/settings 2022-04-09 11:02:46,214 INFO MainThread:16337 [wandb_setup.py:_flush():75] Loading settings from environment variables: {'api_key': 'REDACTED', 'mode': 'offline', '_require_service': 'True'} 2022-04-09 11:02:46,214 WARNING MainThread:16337 [wandb_setup.py:_flush():75] Could not find program at -m surfemb.scripts.train 2022-04-09 11:02:46,214 INFO MainThread:16337 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m surfemb.scripts.train'} 2022-04-09 11:02:46,214 INFO MainThread:16337 [wandb_init.py:_log_setup():405] Logging user logs to /home/aa/prjs/bcnet/pose/surfemb/wandb/offline-run-20220409_110246-3fewafz3/logs/debug.log 2022-04-09 11:02:46,214 INFO MainThread:16337 [wandb_init.py:_log_setup():406] Logging internal logs to /home/aa/prjs/bcnet/pose/surfemb/wandb/offline-run-20220409_110246-3fewafz3/logs/debug-internal.log 2022-04-09 11:02:46,215 INFO MainThread:16337 [wandb_init.py:init():439] calling init triggers 2022-04-09 11:02:46,215 INFO MainThread:16337 [wandb_init.py:init():443] wandb.init called with sweep_config: {} config: {} 2022-04-09 11:02:46,215 INFO MainThread:16337 [wandb_init.py:init():492] starting backend 2022-04-09 11:02:46,228 INFO MainThread:16337 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn 2022-04-09 11:02:46,232 INFO MainThread:16337 [wandb_init.py:init():501] backend started and connected 2022-04-09 11:02:46,238 INFO MainThread:16337 [wandb_init.py:init():565] updated telemetry 2022-04-09 11:02:46,578 INFO MainThread:16337 [wandb_init.py:init():625] starting run threads in backend 2022-04-09 11:02:49,104 INFO MainThread:16337 [wandb_run.py:_console_start():1733] atexit reg 2022-04-09 11:02:49,106 INFO MainThread:16337 [wandb_run.py:_redirect():1606] redirect: SettingsConsole.WRAP 2022-04-09 11:02:49,107 INFO MainThread:16337 [wandb_run.py:_redirect():1643] Wrapping output streams. 2022-04-09 11:02:49,108 INFO MainThread:16337 [wandb_run.py:_redirect():1667] Redirects installed. 2022-04-09 11:02:49,109 INFO MainThread:16337 [wandb_init.py:init():664] run started, returning control to user process 2022-04-09 11:02:49,130 INFO MainThread:16337 [wandb_run.py:_config_callback():992] config_cb None None {'n_objs': 21, 'emb_dim': 12, 'n_pos': 1024, 'n_neg': 1024, 'lr_cnn': 0.0003, 'lr_mlp': 3e-05, 'mlp_name': 'siren', 'mlp_hidden_features': 256, 'mlp_hidden_layers': 2, 'key_noise': 0.001, 'warmup_steps': 2000, 'separate_decoders': True, 'pa_sigma': 0.0, 'align_corners': False, 'dataset': 'ycbv', 'n_valid': 200, 'res_data': 256, 'res_crop': 224, 'batch_size': 16, 'num_workers': 'None', 'min_visib_fract': 0.1, 'max_steps': 500000, 'gpus': 2, 'debug': False, 'ckpt': 'None', 'synth': False, 'real': True} 2022-04-09 11:07:50,141 WARNING MsgRouterThr:16337 [router.py:message_loop():76] message_loop has been closed

    opened by cats0212 3
  • question about bbox and mask

    question about bbox and mask

    Thanks again for this great work. I am still trying to make it work for our case. In order to run the model with our custom dataset, should we need to have bbox and mask in our bop formatted custom dataset? we can provide bbox_visible but not bbox. and we can provide mask_visible but not mask? how important are they? would be bbox_visible and mask_visible enough? if we need them for this model, do you have any idea how to generate that ? thanks thanks in advance

    opened by smoothumut 2
  • Number of threads explodes when training

    Number of threads explodes when training

    In the training script, an additional environment variable needs to be set in the worker_init_fn function

    os.environ['OMP_NUM_THREADS'] = 1

    See torch comment for additional information

    opened by nikwoj 0
  • Pose Refiner Diverges

    Pose Refiner Diverges

    Thank you for the wonderful work. Both the paper and the code are a pleasure to read.

    I have tried the approach on a different dataset and would like to ask for your expert opinion, if I may. A fraction of the predictions (~60%) are very good even with only RGB refinement, but the remaining pose predictions are far away from the actual pose (about 1m in l1 distance) and could be ruled out by calculating the xyz boundaries of the crop. The input pose from the PNP between both fraction almost equally good.

    • Do you have an idea how to discipline the refinement?
    • How would you analyze the quality of the incoming query image or the sampled keys?
    • Do you have any other suggestions what to look for in these cases?

    Thanks again for the wonderful work.

    opened by FabianSchuetze 4
  • error when resuming from checkpoint

    error when resuming from checkpoint

    whenever i try to resume from a previous checkpoint, i get this error: File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/home/moritz/surfemb/surfemb/surfemb/scripts/train.py", line 123, in <module> main() File "/home/moritz/surfemb/surfemb/surfemb/scripts/train.py", line 119, in main trainer.fit(model, loader_train, loader_valid) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 768, in fit self._call_and_handle_interrupt( File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 721, in _call_and_handle_interrupt return trainer_fn(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 809, in _fit_impl results = self._run(model, ckpt_path=self.ckpt_path) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1234, in _run results = self._run_stage() File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1321, in _run_stage return self._run_train() File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1351, in _run_train self.fit_loop.run() File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run self.advance(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/fit_loop.py", line 268, in advance self._outputs = self.epoch_loop.run(self._data_fetcher) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run self.advance(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 208, in advance batch_output = self.batch_loop.run(batch, batch_idx) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run self.advance(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 88, in advance outputs = self.optimizer_loop.run(split_batch, optimizers, batch_idx) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run self.advance(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 203, in advance result = self._run_optimization( File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 256, in _run_optimization self._optimizer_step(optimizer, opt_idx, batch_idx, closure) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/loops/optimization/optimizer_loop.py", line 369, in _optimizer_step self.trainer._call_lightning_module_hook( File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1593, in _call_lightning_module_hook output = fn(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/core/lightning.py", line 1644, in optimizer_step optimizer.step(closure=optimizer_closure) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/core/optimizer.py", line 168, in step step_output = self._strategy.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/strategies/strategy.py", line 193, in optimizer_step return self.precision_plugin.optimizer_step(model, optimizer, opt_idx, closure, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/pytorch_lightning/plugins/precision/precision_plugin.py", line 155, in optimizer_step return optimizer.step(closure=closure, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/torch/optim/lr_scheduler.py", line 65, in wrapper return wrapped(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/torch/optim/optimizer.py", line 109, in wrapper return func(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/torch/optim/adam.py", line 157, in step adam(params_with_grad, File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/torch/optim/adam.py", line 213, in adam func(params, File "/home/moritz/anaconda3/envs/surfemb/lib/python3.8/site-packages/torch/optim/adam.py", line 255, in _single_tensor_adam assert not step_t.is_cuda, "If capturable=False, state_steps should not be CUDA tensors." AssertionError: If capturable=False, state_steps should not be CUDA tensors.

    Any idea how to resolve this?

    also i cant get the training to run with standard settings. i get an outofmemory error on a rtx3070ti (8gb) if i dont run at n-valid = 2 and batch-size = 1

    opened by MoritzkoLP 0
  • 'ambient_occlusion' filter throws core dumped for tless models

    'ambient_occlusion' filter throws core dumped for tless models

    When I run the surface_samples_remesh_visible script for tless objects the processing fails with

    Aborted (core dumped)

    did anyone face the same issue or did I miss some steps before running the script?

    opened by praveen5733 1
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022