Toward Multimodal Image-to-Image Translation

Overview





BicycleGAN

Project Page | Paper | Video

Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our model is able to synthesize possible day images with different types of lighting, sky and clouds. The training requires paired data.

Note: The current software works well with PyTorch 0.41+. Check out the older branch that supports PyTorch 0.1-0.3.

Toward Multimodal Image-to-Image Translation.
Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, Eli Shechtman.
UC Berkeley and Adobe Research
In Neural Information Processing Systems, 2017.

Example results

Other Implementations

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:
git clone -b master --single-branch https://github.com/junyanz/BicycleGAN.git
cd BicycleGAN

For pip users:

bash ./scripts/install_pip.sh

For conda users:

bash ./scripts/install_conda.sh

Use a Pre-trained Model

  • Download some test photos (e.g., edges2shoes):
bash ./datasets/download_testset.sh edges2shoes
  • Download a pre-trained model (e.g., edges2shoes):
bash ./pretrained_models/download_model.sh edges2shoes
  • Generate results with the model
bash ./scripts/test_edges2shoes.sh

The test results will be saved to a html file here: ./results/edges2shoes/val/index.html.

  • Generate results with synchronized latent vectors
bash ./scripts/test_edges2shoes.sh --sync

Results can be found at ./results/edges2shoes/val_sync/index.html.

Generate Morphing Videos

  • We can also produce a morphing video similar to this GIF and Youtube video.
bash ./scripts/video_edges2shoes.sh

Results can be found at ./videos/edges2shoes/.

Model Training

  • To train a model, download the training images (e.g., edges2shoes).
bash ./datasets/download_dataset.sh edges2shoes
  • Train a model:
bash ./scripts/train_edges2shoes.sh
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/edges2shoes_bicycle_gan/web/index.html
  • See more training details for other datasets in ./scripts/train.sh.

Datasets (from pix2pix)

Download the datasets using the following script. Many of the datasets are collected by other researchers. Please cite their papers if you use the data.

  • Download the testset.
bash ./datasets/download_testset.sh dataset_name
  • Download the training and testset.
bash ./datasets/download_dataset.sh dataset_name

Models

Download the pre-trained models with the following script.

bash ./pretrained_models/download_model.sh model_name
  • edges2shoes (edge -> photo) trained on UT Zappos50K dataset.
  • edges2handbags (edge -> photo) trained on Amazon handbags images..
bash ./pretrained_models/download_model.sh edges2handbags
bash ./datasets/download_testset.sh edges2handbags
bash ./scripts/test_edges2handbags.sh
  • night2day (nighttime scene -> daytime scene) trained on around 100 webcams.
bash ./pretrained_models/download_model.sh night2day
bash ./datasets/download_testset.sh night2day
bash ./scripts/test_night2day.sh
  • facades (facade label -> facade photo) trained on the CMP Facades dataset.
bash ./pretrained_models/download_model.sh facades
bash ./datasets/download_testset.sh facades
bash ./scripts/test_facades.sh
  • maps (map photo -> aerial photo) trained on 1096 training images scraped from Google Maps.
bash ./pretrained_models/download_model.sh maps
bash ./datasets/download_testset.sh maps
bash ./scripts/test_maps.sh

Metrics

Figure 6 shows realism vs diversity of our method.

  • Realism We use the Amazon Mechanical Turk (AMT) Real vs Fake test from this repository, first introduced in this work.

  • Diversity For each input image, we produce 20 translations by randomly sampling 20 z vectors. We compute LPIPS distance between consecutive pairs to get 19 paired distances. You can compute this by putting the 20 images into a directory and using this script (note that we used version 0.0 rather than default 0.1, so use flag -v 0.0). This is done for 100 input images. This results in 1900 total distances (100 images X 19 paired distances each), which are averaged together. A larger number means higher diversity.

Citation

If you find this useful for your research, please use the following.

@inproceedings{zhu2017toward,
  title={Toward multimodal image-to-image translation},
  author={Zhu, Jun-Yan and Zhang, Richard and Pathak, Deepak and Darrell, Trevor and Efros, Alexei A and Wang, Oliver and Shechtman, Eli},
  booktitle={Advances in Neural Information Processing Systems},
  year={2017}
}

If you use modules from CycleGAN or pix2pix paper, please use the following:

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on},
  year={2017}
}


@inproceedings{isola2017image,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on},
  year={2017}
}

Acknowledgements

This code borrows heavily from the pytorch-CycleGAN-and-pix2pix repository.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022