ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

Overview

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

This repository is the official implementation of the empirical research presented in the supplementary material of the paper, ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees.

Requirements

To install requirements:

pip install -r requirements.txt

Please install Python before running the above setup command. The code was tested on Python 3.8.10.

Create a folder to store all the models and results:

mkdir ckeckpoint

Training

To fully replicate the results below, train all the models by running the following two commands:

./train_cuda0.sh
./train_cuda1.sh

We used two separate scripts because we had two NVIDIA GPUs and we wanted to run two training processes for different models at the same time. If you have more GPUs or resources, you can submit multiple jobs and let them run in parallel.

To train a model with different seeds (initializations), run the command in the following form:

python main.py --data <dataset> --model <DNN_model> --mu <learning_rate>

The above command uses the default seed list. You can also specify your seeds like the following example:

python main.py --data CIFAR10 --model CIFAR10_BNResNEst_ResNet_110 --seed_list 8 9

Run this command to see how to customize your training or hyperparameters:

python main.py --help

Evaluation

To evaluate all trained models on benchmarks reported in the tables below, run:

./eval.sh

To evaluate a model, run:

python eval.py --data  <dataset> --model <DNN_model> --seed_list <seed>

Results

Image Classification on CIFAR-10

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 95.58% (11M) 94.47% (11M) 95.49% (11M) 95.29% (8.7M)
WRN-40-4 95.49% (9.0M) 94.64% (9.0M) 95.62% (9.0M) 95.48% (8.4M)
ResNet-110 94.33% (1.7M) 92.62% (1.7M) 94.47% (1.7M) 93.93% (1.7M)
ResNet-20 92.58% (0.27M) 90.98% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Image Classification on CIFAR-100

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 79.14% (11M) 75.42% (11M) 78.98% (11M) 78.74% (8.9M)
WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.81% (9.0M) 78.69% (8.7M)
ResNet-110 74.08% (1.7M) 69.08% (1.7M) 74.24% (1.7M) 72.53% (1.9M)
ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.49% (0.28M) 68.16% (0.27M)

BibTeX

@inproceedings{chen2021resnests,
  title={{ResNEsts} and {DenseNEsts}: Block-based {DNN} Models with Improved Representation Guarantees},
  author={Chen, Kuan-Lin and Lee, Ching-Hua and Garudadri, Harinath and Rao, Bhaskar D.},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
Kuan-Lin (Jason) Chen
Kuan-Lin (Jason) Chen
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022