Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Overview

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient

This repository is the official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Shanchao Yang, Kaili Ma, Baoxiang Wang, Hongyuan Zha, Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient

ResiNet policy_architecture

Installation

  • CUDA 11.+

  • Create Python environment (3.+), using anaconda is recommended:

    conda create -n my-resinet-env python=3.8
    conda activate my-resinet-env
    
  • Install Pytorch using anaconda

    conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
    

    or using Pip

    pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
    
  • Install networkx, tensorflow, tensorboardX, numpy, numba, dm-tree, gym, dgl, pyg

    pip install networkx==2.5
    pip install tensorflow-gpu==2.3.0
    pip install numpy==1.20.3
    pip install numba==0.52.0
    pip install gym==0.18.0
    pip install tabulate
    pip install dm-tree
    pip install lz4
    pip install opencv-python
    pip install tensorboardX
    pip install dgl-cu111 -f https://data.dgl.ai/wheels/repo.html
    pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-geometric
    
  • Install ray

    • Use the specific commit version of ray 8a066474d44110f6fddd16618351fe6317dd7e03

      For Linux:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-manylinux2014_x86_64.whl
      

      For Windows:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-win_amd64.whl
      
    • Download our repository, which includes the source codes of ray and ResiNet.

      git clone https://github.com/yangysc/ResiNet.git
      
    • Set the symlink of rllib to use our custom rllib (remeber to remove these symlinks before uninstalling ray!)

      python ResiNet/ray-master/python/ray/setup-dev.py -y
      

Code description

There are 4 important file folders.

  • Environment: ResiNet/ray-master/rllib/examples/env/

    • graphenv.py is the edge rewiring environment based on OpenAI gym.

    • parametric_actions_graph.py is the env wrapper that accesses the graph from graphenv.py and returns the dict observation.

    • utils_.py defines the reward calculation strategy.

    • get_mask.py defines the action mask calculation for selecting the first edge and the second edge.

    • datasets is the folder for providing training and test datasets. The following table (Table 2, Page 17 in the paper) records the statistics of graphs used in the paper.

      Dataset Node Edge Action Space Size
      BA-15 15 54 5832
      BA-50 50 192 73728
      BA-100 100 392 307328
      EU 217 640 819200
      BA-10-30 () 10-30 112 25088
      BA-20-200 () 20-200 792 1254528
  • Model: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_model.py is the network architecture of ResiNet.
    • gnnmodel.py defines the GIN model based on dgl.
  • Distribution: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_dist.py is the action distribution module of ResiNet.
  • Loss: ResiNet/ray-master/rllib/agents/ppo/

    • ppo_torch_policy.py defines the DDPPO loss function.

Run

Platform

We tested the following experiments (see Command) with

  • GPU: GEFORCE RTX 3090 * 2 (24 G memory * 2 = 48G in total)
  • CPU: AMD 3990X

Adjust the corresponding hyperparameters according to your GPU hardware. Our code supports the multiple gpus training thanks to ray. The GPU memory capacity and the number of gpu are the main bottlenecks for DDPPO. The usage of more gpus means a faster training.

  • num-gpus: the number of GPU available in total (increase it if more gpus are available)
  • bs: batch size
  • mini-bs: minibatch size
  • tasks-per-gpu๏ผšthe number of paralleled worker
  • gpus_per_instance: the number of GPU used for this train instance (ray can support tune multiple instances simultaneously) (increase it if more gpus are available)

Command

First go to the following folder.

cd ResiNet/ray-master/rllib/examples

Train

  • Transductive setting (dataset is in [example_15, example_50, example_100, EU])

    • Run the experiment on optimizing the BA-15 dataset with alpha=0, risilience metric R, node degree-based attack:

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of the filtration order (set to -3):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-3  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of alpha (the coefficient of weighted sum of resilience and utility) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=-1 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      
    • Optimize the BA-15 dataset with a grid search of robust-measure (resilience metric, choice is [R, sr, ac]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=-1 --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of second-obj-func (utility metric, choice is [ge, le]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=-1 --seed=-1 
      
    • Optimize the BA-15 dataset with a grid search of seed (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=-1 
      
    • Optimize the EU dataset (increase bs and hidden_dim if more gpus are available. Four gpus would be better for hidden_dim=64):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=EU --tasks-per-gpu=1 --gpus_per_instance=2 --bs=1024 --mini-bs=256 --filtration_order=1 --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=32 --attack_strategy=degree --second-obj-func=ge --seed=0  
      
  • Inductive setting (dataset is in [ba_small_30, ba_mixed])

    • for the ba_small_30 dataset (use full filtration)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_small_30 --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • for the ba_mixed dataset (set filtratio_order to 1, tasks-per-gpu to 1 and bs to 2048)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_mixed --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      

We highly recommend using tensorboard to monitor the training process. To do this, you may run

tensorboard --logdir log/DDPPO

Set checkpoint_freq to be non-zero (zero by default) if you want to save the trained models during the training process. And the final trained model will be saved by default when the training is done. All trained models and tensorboard logs are saved in the folder log/DDPPO/.

Test

  • BA-15 (dataset is in [example_15, example_50, example_100, EU, ba_small_30, ba_mixed]) (The problem setting related hyperparameters need to be consistent with the values used in training.)
    CUDA_VISIBLE_DEVICES=0,1 python evaluate_trained_agent_dppo.py --num-gpus=2 --tasks-per-gpu=1 --bs=400 --mini-bs=16 --gpus_per_instance=1 --ppo_alg=dcppo --attack_strategy=degree --second-obj-func=le --seed=0 --reward_scale=1 --test_num=-1 --cwd-path=./test  --alpha=0.5 --dataset=example_15 --filtration_order=-1  --robust-measure=ac --hidden_dim=64
    
    Remember to set the restore_path in evaluate_trained_agent_dppo.py (Line 26) to the trained model folder.
Owner
Shanchao Yang
PhD student at CUHK-Shenzhen; Graph learning & Reinforcement learning
Shanchao Yang
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

MLยฒ AT CILVR 18 Nov 18, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates ๐Ÿ”ฅ ๐Ÿ”ฅ ๐Ÿ”ฅ Date Announcements 03/08/2021 ๐ŸŽ† ๐ŸŽ† We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022