Deep learning model, heat map, data prepo

Overview

DEEP LEARNING ON USA DEMOCRATES DEBATE

By Pamela Dekas

import sys
import csv
import re 
import nltk
import string
import unicodedata
from textblob import TextBlob
from collections import Counter
import pandas as pd
import numpy as np
from wordcloud import WordCloud
from nltk.classify import * 
from nltk.corpus import stopwords
from sklearn.metrics import f1_score, roc_auc_score
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
import nltk.classify.util
import matplotlib.pyplot as plt
from string import punctuation 
from nltk.corpus import stopwords
from wordcloud import STOPWORDS
import os
from sklearn.model_selection import train_test_split
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
Using TensorFlow backend.



---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)


   
     in 
    
     ()
     22 import os
     23 from sklearn.model_selection import train_test_split
---> 24 from keras.datasets import imdb
     25 from keras.models import Sequential
     26 from keras.layers import Dense


~\Anaconda3\lib\site-packages\keras\__init__.py in 
     
      ()
      1 from __future__ import absolute_import
      2 
----> 3 from . import utils
      4 from . import activations
      5 from . import applications


~\Anaconda3\lib\site-packages\keras\utils\__init__.py in 
      
       ()
      4 from . import data_utils
      5 from . import io_utils
----> 6 from . import conv_utils
      7 from . import losses_utils
      8 from . import metrics_utils


~\Anaconda3\lib\site-packages\keras\utils\conv_utils.py in 
       
        () 7 from six.moves import range 8 import numpy as np ----> 9 from .. import backend as K 10 11 ~\Anaconda3\lib\site-packages\keras\backend\__init__.py in 
        
         () ----> 1 from .load_backend import epsilon 2 from .load_backend import set_epsilon 3 from .load_backend import floatx 4 from .load_backend import set_floatx 5 from .load_backend import cast_to_floatx ~\Anaconda3\lib\site-packages\keras\backend\load_backend.py in 
         
          () 88 elif _BACKEND == 'tensorflow': 89 sys.stderr.write('Using TensorFlow backend.\n') ---> 90 from .tensorflow_backend import * 91 else: 92 # Try and load external backend. ~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in 
          
           () 52 53 # Private TF Keras utils ---> 54 get_graph = tf_keras_backend.get_graph 55 # learning_phase_scope = tf_keras_backend.learning_phase_scope # TODO 56 name_scope = tf.name_scope AttributeError: module 'tensorflow.python.keras.backend' has no attribute 'get_graph' 
          
         
        
       
      
     
    
   
speech = pd.read_csv('debate_transcripts_v3_2020-02-26.csv',encoding= 'unicode_escape')
df= pd.DataFrame(speech)
dem_speakers = df["speaker"]
number_of_speakers = len(set(dem_speakers))
print("Nombre de speakers:",number_of_speakers, "speakers")

# Mean duration of speech.
print("temps moyen de parole:",np.mean(df["speaking_time_seconds"]), "seconds")
print("Dataset size:", len(df))
Nombre de speakers: 106 speakers
temps moyen de parole: 16.49230769230769 seconds
Dataset size: 5911
df.info()

   
    
RangeIndex: 5911 entries, 0 to 5910
Data columns (total 6 columns):
date                     5911 non-null object
debate_name              5911 non-null object
debate_section           5911 non-null object
speaker                  5911 non-null object
speech                   5911 non-null object
speaking_time_seconds    5395 non-null float64
dtypes: float64(1), object(5)
memory usage: 277.2+ KB

   
df.groupby('speaker')['speaking_time_seconds'].sum(level=0).nlargest(10).plot.bar()
plt.title('Repartition par temps de parole')
plt.show()

png

debate_time = df.groupby(by=['speaker', 'date']).speaking_time_seconds.sum().nlargest(15)
debate_time.plot()

   

   

png

suppresion des colonnes qui ne seront pas utilisé dans la suite du projet et creation du dataset final###

df=df.drop(['date','debate_name','debate_section','speaking_time_seconds'],1)
df.head(5)
speaker speech
0 Norah O�Donnell Good evening and welcome, the Democratic presi...
1 Gayle King And Super Tuesday is just a week away and this...
2 Norah O�Donnell And CBS News is proud to bring you this debate...
3 Gayle King And we are partnering tonight also with Twitte...
4 Norah O�Donnell Now, here are the rules for the next two hours...

PREPROCESSING

import nltk 
nltk.download('punkt')
stopwords = nltk.corpus.stopwords.words('english')
Tailored_stopwords=('im','ive','mr','weve','dont','well','will','make','us','we',
                      'I','make','got','need','want','think',
                      'going','go','one','thank','going',
                      'way','say','every','re','us','first',
                     'now','said','know','look','done','take',
                     'number','two','three','s','m',"t",
                      'let','don','tell','ve','im','mr','put','maybe','whether','many', 'll','around','thing','Secondly','doesn','lot')
#stopwords = nltk.corpus.stopwords.words('english')
stopwords = set(STOPWORDS)
stopwords= stopwords.union(Tailored_stopwords)
[nltk_data] Downloading package punkt to C:\Users\pamel.DESKTOP-O19M7N
[nltk_data]     F\AppData\Roaming\nltk_data...
[nltk_data]   Package punkt is already up-to-date!
def Text_cleansing(speech):
    speech = re.sub('@[A-Za-z0–9]+', '', str(speech))
    speech = re.sub('#', '', speech) # Enlever les '#' hash tag
    speech = re.sub('rt', '', speech)
    speech=re.sub(',',' ', speech)
    speech=re.sub('!',' ',speech)
    speech=re.sub(':',' ',speech)
    speech=re.sub("'","",speech)
    speech=re.sub('"','',speech)
    speech=speech.lower()
    speech = word_tokenize(speech)
    return speech
def remove_stopwords(speech):
    speech_clean = [word for word in speech if word not in stopwords]
    return speech_clean
                         
df['speech_tokens']= df['speech'].apply(Text_cleansing)
df.head(5)
speaker speech speech_tokens
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t...
df['speech_clean']=df['speech_tokens'].apply(remove_stopwords)
df.head(5)
speaker speech speech_tokens speech_clean
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,... [good, evening, welcome, democratic, president...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,... [super, tuesday, week, away, biggest, primary,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th... [cbs, news, proud, bring, debate, along, co-sp...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ... [panering, tonight, twitter, ., home, paicipat...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t... [rules, next, hours, ., asked, question, minut...
def wordcloud(dataframe):
    Aw= df['speech_clean']
    wordCloud = WordCloud(width=500, height=300,background_color='white', max_font_size=110).generate(str(Aw))
    plt.imshow(wordCloud, interpolation="bilinear")
    plt.axis("off")
    plt.title("speech wordcloud")

wordcloud(df['speech_clean'])

png

Pour la suite du projet on reduira la liste des speakers aux candidats les plus notoires (top 7 speakers)###

df = df.loc[df.speaker.isin({'Joe Biden', 'Bernie Sanders', 'Elizabeth Warren', 'Michael Bloomberg', 'Pete Buttigieg', 'Amy Klobuchar',  'Tulsi Gabbard'})]
df.head()
df.shape
(2245, 4)

CountVectorizer et creation du dict des mots par candidat a utiliser sur les modeles ML qui seront en back-up###

Analyse Lexicale

cv = CountVectorizer(stop_words=stopwords)
df_cv = cv.fit_transform(df.speech)
df_words = pd.DataFrame(df_cv.toarray(), columns=cv.get_feature_names())
df_words.index = df.speaker
df_words = df_words.transpose()
df_words
speaker Bernie Sanders Michael Bloomberg Michael Bloomberg Bernie Sanders Pete Buttigieg Elizabeth Warren Elizabeth Warren Pete Buttigieg Joe Biden Bernie Sanders ... Amy Klobuchar Elizabeth Warren Amy Klobuchar Tulsi Gabbard Tulsi Gabbard Amy Klobuchar Amy Klobuchar Amy Klobuchar Elizabeth Warren Elizabeth Warren
00 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
000 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
001st 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
05 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100s 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
xinjiang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yachts 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yale 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yanked 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
ye 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yeah 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 1 0 0
year 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yearly 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
years 2 0 0 0 0 0 0 1 0 0 ... 0 0 0 0 0 0 0 0 1 0
yellow 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemen 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemin 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yep 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yes 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yesterday 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yet 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yo 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
york 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yorker 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
young 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
younger 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youngest 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youth 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youtube 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zealand 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zero 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zeroed 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zip 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zone 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

6385 rows × 2245 columns

top_dict = {}
for c in df_words.columns:
    top = df_words[c].sort_values(ascending=False).head(30)
    top_dict[c]= list(zip(top.index, top.values))
for speaker, top_words in top_dict.items():
    print(speaker)
    print(', '.join([word for word, count in top_words[0:9]]))
    print('---')
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)


   
     in 
    
     ()
      1 top_dict = {}
      2 for c in df_words.columns:
----> 3     top = df_words[c].sort_values(ascending=False).head(30)
      4     top_dict[c]= list(zip(top.index, top.values))
      5 for speaker, top_words in top_dict.items():


TypeError: sort_values() missing 1 required positional argument: 'by'

    
   
df2=pd.DataFrame(top_dict)
df2.head(15)
from collections import Counter
words = []
for speaker in df_words.columns:
    top = [word for (word, count) in top_dict[speaker]]
    for t in top:
        words.append(t)
Counter(words).most_common(15)
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)


   
     in 
    
     ()
      2 words = []
      3 for speaker in df_words.columns:
----> 4     top = [word for (word, count) in top_dict[speaker]]
      5     for t in top:
      6         words.append(t)


KeyError: 'Bernie Sanders'

    
   

Implemantation du modèle###

print(df.columns)
print(df.shape)
df['speaker'] = df['speaker'].astype(str)
Index(['speaker', 'speech', 'speech_tokens', 'speech_clean'], dtype='object')
(2245, 4)

Embedding

import gensim
RANDOM_STATE = 50
EPOCHS = 5
BATCH_SIZE = 256
EMB_DIM = 100
SAVE_MODEL = True

X = df['speech_clean']
print(X.head())
X.shape
5     [well, you�re, right, economy, really, great, ...
6                                            [senator-]
8     [think, donald, trump, thinks, would, better, ...
9     [oh, mr., bloomberg, ., let, tell, mr., putin,...
11     [know, president, russia, wants, it�s, chaos, .]
Name: speech_clean, dtype: object





(2245,)
emb_model = gensim.models.Word2Vec(sentences = X, size = EMB_DIM, window = 5, workers = 4, min_count = 1)
print('La taille du vocabulaire appris est de ',len(list(emb_model.wv.vocab)))
La taille du vocabulaire appris est de  7139
from keras.preprocessing.text import Tokenizer
import tokenize
max_length = max([len(s) for s in X])

tokenizer_new = Tokenizer()
tokenizer_new.fit_on_texts(X)

X_seq = tokenizer_new.texts_to_sequences(X)
X_fin = sequence.pad_sequences(X_seq, maxlen = max_length)
print(X_fin.shape)
(2245, 140)
emb_vec = emb_model.wv
MAX_NB_WORDS = len(list(emb_vec.vocab))
tokenizer_word_index = tokenizer_new.word_index
vocab_size = len(tokenizer_new.word_index) + 1
embedded_matrix = np.zeros((vocab_size, EMB_DIM))


for word, i in tokenizer_word_index.items():
    if i>= MAX_NB_WORDS:
        continue
    try:
        embedding_vector = emb_vec[word]
        wv_matrix[i] = embedding_vector
    except:
        pass      
embedded_matrix.shape
print(embedded_matrix)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

Préparation des variables

from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
y = df.speaker
print(y.head(10))
y.shape
5     1
6     4
8     4
9     1
11    5
12    2
13    2
15    5
21    3
23    1
Name: speaker, dtype: int32





(2245,)
Counter(y)
Counter({'Bernie Sanders': 430,
         'Michael Bloomberg': 97,
         'Pete Buttigieg': 392,
         'Elizabeth Warren': 440,
         'Joe Biden': 456,
         'Amy Klobuchar': 353,
         'Tulsi Gabbard': 77})
le=LabelEncoder()
df['speaker'] = le.fit_transform(df['speaker'])
df.head()

y = df.speaker
y.head()
print(y.shape)
print(X_fin.shape)
(2245,)
(2245, 140)
X_train, X_test, y_train, y_test = train_test_split(X_fin , y, test_size = 0.2, random_state = 42)


print(X_train.shape)
print(y_train.shape)
(1796, 140)
(1796,)

Construction des NN

model_pre_trained = Sequential()

model_pre_trained.add(Embedding(vocab_size, EMB_DIM, weights = [embedded_matrix], 
                    input_length = max_length, trainable = False))
model_pre_trained.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model_pre_trained.add(Dense(1, activation='softmax'))

model_pre_trained.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

model_pre_trained.summary()
Model: "sequential_11"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_11 (Embedding)     (None, 140, 100)          714000    
_________________________________________________________________
lstm_13 (LSTM)               (None, 128)               117248    
_________________________________________________________________
dense_9 (Dense)              (None, 1)                 129       
=================================================================
Total params: 831,377
Trainable params: 117,377
Non-trainable params: 714,000
_________________________________________________________________

Fitting

history_pre_trained = model_pre_trained.fit(X_fin, y, batch_size = BATCH_SIZE, epochs =20, verbose =1, validation_split = 0.2)
Train on 1796 samples, validate on 449 samples
Epoch 1/20
1796/1796 [==============================] - 4s 2ms/step - loss: 0.5429 - accuracy: 0.1754 - val_loss: -0.4417 - val_accuracy: 0.2472
Epoch 2/20
1796/1796 [==============================] - 3s 2ms/step - loss: -6.7429 - accuracy: 0.1776 - val_loss: -14.1017 - val_accuracy: 0.2472
Epoch 3/20
1796/1796 [==============================] - 3s 2ms/step - loss: -15.8550 - accuracy: 0.1776 - val_loss: -19.5441 - val_accuracy: 0.2472
Epoch 4/20
1796/1796 [==============================] - 3s 2ms/step - loss: -20.7949 - accuracy: 0.1776 - val_loss: -23.4335 - val_accuracy: 0.2472
Epoch 5/20
1796/1796 [==============================] - 3s 2ms/step - loss: -24.1430 - accuracy: 0.1776 - val_loss: -25.9735 - val_accuracy: 0.2472
Epoch 6/20
1796/1796 [==============================] - 3s 2ms/step - loss: -26.4535 - accuracy: 0.1776 - val_loss: -28.0725 - val_accuracy: 0.2472
Epoch 7/20
1796/1796 [==============================] - 3s 2ms/step - loss: -28.4266 - accuracy: 0.1776 - val_loss: -29.9313 - val_accuracy: 0.2472
Epoch 8/20
1796/1796 [==============================] - 3s 2ms/step - loss: -30.1754 - accuracy: 0.1776 - val_loss: -31.6261 - val_accuracy: 0.2472
Epoch 9/20
1796/1796 [==============================] - 3s 2ms/step - loss: -31.8791 - accuracy: 0.1776 - val_loss: -33.3337 - val_accuracy: 0.2472
Epoch 10/20
1796/1796 [==============================] - 4s 2ms/step - loss: -33.5166 - accuracy: 0.1776 - val_loss: -34.9834 - val_accuracy: 0.2472
Epoch 11/20
1796/1796 [==============================] - 3s 2ms/step - loss: -35.1544 - accuracy: 0.1776 - val_loss: -36.5973 - val_accuracy: 0.2472
Epoch 12/20
1796/1796 [==============================] - 3s 2ms/step - loss: -36.7253 - accuracy: 0.1776 - val_loss: -38.2070 - val_accuracy: 0.2472
Epoch 13/20
1796/1796 [==============================] - 3s 2ms/step - loss: -38.3344 - accuracy: 0.1776 - val_loss: -39.8655 - val_accuracy: 0.2472
Epoch 14/20
1796/1796 [==============================] - 3s 2ms/step - loss: -39.9810 - accuracy: 0.1776 - val_loss: -41.5162 - val_accuracy: 0.2472
Epoch 15/20
1796/1796 [==============================] - 3s 1ms/step - loss: -41.6567 - accuracy: 0.1776 - val_loss: -43.2049 - val_accuracy: 0.2472
Epoch 16/20
1796/1796 [==============================] - 3s 1ms/step - loss: -43.2579 - accuracy: 0.1776 - val_loss: -44.8235 - val_accuracy: 0.2472
Epoch 17/20
1796/1796 [==============================] - 3s 1ms/step - loss: -44.9030 - accuracy: 0.1776 - val_loss: -46.4982 - val_accuracy: 0.2472
Epoch 18/20
1796/1796 [==============================] - 2s 1ms/step - loss: -46.5038 - accuracy: 0.1776 - val_loss: -48.0627 - val_accuracy: 0.2472
Epoch 19/20
1796/1796 [==============================] - 3s 1ms/step - loss: -48.0124 - accuracy: 0.1776 - val_loss: -49.5424 - val_accuracy: 0.2472
Epoch 20/20
1796/1796 [==============================] - 2s 1ms/step - loss: -49.5209 - accuracy: 0.1776 - val_loss: -51.1489 - val_accuracy: 0.2472

Evaluation du modèle

score = model_pre_trained.evaluate(X_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: -51.148848297866785
Test accuracy: 0.18930958211421967

ptoblèmes: npmbre important de stopwords à rajouter au dictionnaire, doutes sur la fonction dactivation, stemming/lemmatization qui semble peu efficace; axes d'amélioration: explorer les N grammes pouir contextualiser les mots et creer u_n dictionnaire de stopwords customisé pour les deabts ( association d'idées)/


Owner
Pamela Dekas
Adepte de text mining, deep learning and data visualization
Pamela Dekas
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022