Deep Crop Rotation

Overview

Deep Crop Rotation

Paper (to come very soon!)

We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classification. Our approach, based on the PSE+LTAE model, provides a significant performance boost of +6.6 mIoU compared to single-year models. We release the first large-scale multi-year agricultural dataset with over 100 000 annotated parcels for 3 years: 2018, 2019, and 2020.

Sublime's custom image

Requirements

  • PyTorch + Torchnet
  • Numpy + Pandas + Scipy + scikit-learn
  • pickle
  • os
  • json
  • argparse

The code was developed in python 3.7.7 with pytorch 1.8.1 and cuda 11.3 on a debian, ubuntu 20.04.3 environment.

Downloads

Multi-year Sentinel-2 dataset

You can download our Multi-Year Sentinel-2 Dataset here.

Code

This repository contains the scripts to train a multi-year PSE-LTAE model with a spatially separated 5-fold cross-validation scheme. The implementations of the PSE-LTAE can be found in models.

Use the train.py script to train the 130k-parameter L-TAE based classifier with 2 years declarations and multi-year modeling (2018, 2019 and 2020). You will only need to specify the path to the dataset folder:

python3 train.py --dataset_folder path_to_multi_year_sentinel_2_dataset

If you want to use a specific number of year for temporal features add: --tempfeat number_of_year (eg. 3)

Choose the years used to train the model with: --year (eg. "['2018', '2019', '2020']")

Pre-trained models

Two pre-trained models are available in the models_saved repository:

  • Mdec: Multi-year Model with 2 years temporal features, trained on a mixed year training set.
  • Mmixed: singe-year model, trained on a mixed year training set.

Use our pre-trained model with: --test_mode true --loaded_model path_to_your_model --tempfeat number_of_years_used_to_train_the_model

Use your own data

If you want to train a model with your own data, you need to respect a specific architecture:

  • A main repository should contain two sub folders: DATA and META and a normalisation file.
  • META: contains the labels.json file containing the ground truth, dates.json containing each date of acquisition and geomfeat.json containing geometrical features (dates.json and geomfeat.json are optional).
  • DATA: contains a sub folder by year containing a .npy file by parcel.

Each parcel of the dataset must appear for each year with the same name in the DATA folder. You must specify the number of acquisitions in the year that has the most acquisitions with the option --lms length_of_the_sequence. You also need to add your own normalisation file in train.py

Credits

  • The original PSE-LTAE model adapted for our purpose can be found here
Owner
Félix Quinton
Félix Quinton
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022