Keras like implementation of Deep Learning architectures from scratch using numpy.

Overview

Mini-Keras

Keras like implementation of Deep Learning architectures from scratch using numpy.

How to contribute?

The project contains implementations for various activation functions, layers, loss functions, model structures and optimizers in files activation.py, layer.py, loss.py, model.py and optimizer.py respectively.

Given below is list of available implementations (which may or may not require any improvements).

Activation Functions Status
Sigmoid Available
ReLU Required
Softmax Required
Layer Status
Dense Available
Conv2D Available
MaxPool2D Available
Flatten Available
BasicRNN Required
Loss Function Status
BinaryCrossEntropy Available
CategoricalCrossEntropy Required
Model Structure Status
Sequential Available
Optimizer Status
GradientDescentOptimizer Available
AdamOptimizer Required
AdaGradOptimizer Required
GradientDescentOptimizer (with Nesterov) Required

Each of the implementations are class-based and follows a keras like structure. A typical model training with Mini-Keras looks like this,

from model import Sequential
from layer import Dense, Conv2D, MaxPool2D, Flatten
from loss import BinaryCrossEntropy
from activation import Sigmoid
from optimizer import GradientDescentOptimizer

model = Sequential()
model.add(Conv2D, ksize=3, stride=1, activation=Sigmoid(), input_size=(8,8,1), filters=1, padding=0)
model.add(MaxPool2D, ksize=2, stride=1, padding=0)
model.add(Conv2D, ksize=2, stride=1, activation=Sigmoid(), filters=1, padding=0)
model.add(Flatten)
model.add(Dense, units=1, activation=Sigmoid())
model.summary()

model.compile(BinaryCrossEntropy())

print("Initial Loss", model.evaluate(X, y)[0])
model.fit(X, y, n_epochs=100, batch_size=300, learning_rate=0.003, optimizer=GradientDescentOptimizer(), verbose=1)
print("Final Loss", model.evaluate(X, y)[0])

As you might have noticed, its very similar to how one will do it in Keras.

Testing new functionalities

The run.py consists of a small code snippet that can be used to test if your new implementation is working properly or not.

Implementation Details

All the implementations have a forward propagation and a backward propagation equivalent available as a method in the corresponding class. Below are the details for implementing all the functionalities under different categories.

README.ipynb explains each of the implementations with mathematical proofs for better understanding.

Owner
MANU S PILLAI
I have no special talents. I am only passionately curious. | Just MachineLearning |
MANU S PILLAI
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022