A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Overview

Graph Wavelet Neural Network

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019).

Abstract

We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.

A reference Tensorflow implementation is accessible [here].

This repository provides an implementation of Graph Wavelet Neural Network as described in the paper:

Graph Wavelet Neural Network. Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, Xueqi Cheng. ICLR, 2019. [Paper]


Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0
PyGSP             0.5.1

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training the model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path        STR   Input graph path.   Default is `input/cora_edges.csv`.
  --features-path    STR   Features path.      Default is `input/cora_features.json`.
  --target-path      STR   Target path.        Default is `input/cora_target.csv`.
  --log-path         STR   Log path.           Default is `logs/cora_logs.json`.

Model options

  --epochs                INT       Number of Adam epochs.         Default is 200.
  --learning-rate         FLOAT     Number of training epochs.     Default is 0.01.
  --weight-decay          FLOAT     Weight decay.                  Default is 5*10**-4.
  --filters               INT       Number of filters.             Default is 16.
  --dropout               FLOAT     Dropout probability.           Default is 0.5.
  --test-size             FLOAT     Test set ratio.                Default is 0.2.
  --seed                  INT       Random seeds.                  Default is 42.
  --approximation-order   INT       Chebyshev polynomial order.    Default is 3.
  --tolerance             FLOAT     Wavelet coefficient limit.     Default is 10**-4.
  --scale                 FLOAT     Heat kernel scale.             Default is 1.0.

Examples

The following commands learn the weights of a graph wavelet neural network and saves the logs. The first example trains a graph wavelet neural network on the default dataset with standard hyperparameter settings. Saving the logs at the default path.

python src/main.py

Training a model with more filters in the first layer.

python src/main.py --filters 32

Approximationg the wavelets with polynomials that have an order of 5.

python src/main.py --approximation-order 5

License


Comments
  • what's the meanning of the

    what's the meanning of the "feature matrix"?

    Hello author, sorry about a stupid question. But the Cora dataset has Cora.cites corresponding your cora_edges.csv, and Cora.content's paper index and paper category for your cora_target.csv, so I don't understand the meanning of your cora_features.json . In the beginning, I just think it's an adjacency matrix of all nodes(paper index), however, the content are inconsistent. Such as ,in cora_edges.csv it's as the picture as follw: image and in cora_features.json it's : image So I am confused , and hope for your answer. Thank you very much.

    opened by CindyTing 7
  • How can l use this code for graph classification ?

    How can l use this code for graph classification ?

    Hi @benedekrozemberczki ,

    Let me first thank you for this promising work.

    I would like to apply your GWNN to graph classification problems rather than nodes classification.

    Do you have any extension for that ?

    Thank you

    opened by Benjiou 4
  • the kernel

    the kernel

    Hi, author, There was a variable in the code called diagnoal_weight_filter 屏幕截图 2021-01-16 204442 I think the variable should change in the trainning time,but it never changed when I debugging. It's so confusing. And I wonder if the variable conduct the same role as the diagnoal_weight_filer in the tensorflow implementation will change.

    opened by maxmit233 3
  • Fatal Python error: Segmentation fault

    Fatal Python error: Segmentation fault

    hi, author. These days i've been watching the program. But when I run on this code, I find an error happened during the time. Can you give me some suggestions?

    image

    image

    opened by Evelyn-coder 2
  • something about wavelet basis

    something about wavelet basis

    Hello~, Thank you for your paper. when I read the paper, I think about what is the connection between wavelet basis and Fourier basis, can you give me some tips?

    opened by ICDI0906 1
  • RuntimeError: the derivative for 'index' is not implemented

    RuntimeError: the derivative for 'index' is not implemented

    Hello, I was running the example and got this error.

    python src/main.py
    +---------------------+----------------------------+
    |      Parameter      |           Value            |
    +=====================+============================+
    | Approximation order | 20                         |
    +---------------------+----------------------------+
    | Dropout             | 0.500                      |
    +---------------------+----------------------------+
    | Edge path           | ./input/cora_edges.csv     |
    +---------------------+----------------------------+
    | Epochs              | 300                        |
    +---------------------+----------------------------+
    | Features path       | ./input/cora_features.json |
    +---------------------+----------------------------+
    | Filters             | 16                         |
    +---------------------+----------------------------+
    | Learning rate       | 0.001                      |
    +---------------------+----------------------------+
    | Log path            | ./logs/cora_logs.json      |
    +---------------------+----------------------------+
    | Scale               | 1                          |
    +---------------------+----------------------------+
    | Seed                | 42                         |
    +---------------------+----------------------------+
    | Target path         | ./input/cora_target.csv    |
    +---------------------+----------------------------+
    | Test size           | 0.200                      |
    +---------------------+----------------------------+
    | Tolerance           | 0.000                      |
    +---------------------+----------------------------+
    | Weight decay        | 0.001                      |
    +---------------------+----------------------------+
    
    Wavelet calculation and sparsification started.
    
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 237.23it/s]
    100%|███████████████████████████████████████████████████████████████████████████████████| 2708/2708 [00:11<00:00, 228.91it/s]
    
    Normalizing the sparsified wavelets.
    
    Density of wavelets: 0.2%.
    Density of inverse wavelets: 0.04%.
    
    Training.
    
    Loss:   0%|                                                                                          | 0/300 [00:00<?, ?it/s]Traceback (most recent call last):
      File "src/main.py", line 24, in <module>
        main()
      File "src/main.py", line 18, in main
        trainer.fit()
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 131, in fit
        prediction = self.model(self.phi_indices, self.phi_values , self.phi_inverse_indices, self.phi_inverse_values, self.feature_indices, self.feature_values)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn.py", line 44, in forward
        deep_features_1 = self.convolution_1(phi_indices, phi_values, phi_inverse_indices, phi_inverse_values, feature_indices, feature_values, self.args.dropout)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/paperspace/Thesis/GraphWaveletNeuralNetwork/src/gwnn_layer.py", line 55, in forward
        localized_features = spmm(phi_product_indices, phi_product_values, self.ncount, filtered_features)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_sparse/spmm.py", line 21, in spmm
        out = scatter_add(out, row, dim=0, dim_size=m)
      File "/home/paperspace/miniconda2/envs/thesis/lib/python3.6/site-packages/torch_scatter/add.py", line 73, in scatter_add
        return out.scatter_add_(dim, index, src)
    RuntimeError: the derivative for 'index' is not implemented
    
    opened by youjinChung 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022